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Major hospitals face a difficult challenge of designing shift sched-

ules for their residents that satisfy demand, provide quality care, and

are compliant with regulations restricting shift lengths. Motivated

by empirical work conducted by the authors at the Brigham and

Women’s (B&W) Hospital in Boston, we analyze the impact of shift

lengths on two key performance metrics. The first metric is admitting

capacity—the largest patient arrival rate sustainable by a given shift

schedule. The second metric is the number of reassigned patients—

the number of patients admitted temporarily by one doctor and then

permanently transferred to a resident.

We build a queueing model to compare two shift scheduling poli-

cies that are representative of the alternatives encountered in hospi-

tals: one where residents work long shifts on alternating days, called

Long Shifts (LS), and another where residents admit patients daily

in short shifts, called Daily Admitting (DA). We determine the ad-

mitting capacity for our queueing model under each policy. Then we

construct a fluid model—a large scale approximation of the underly-

ing queueing model. We show that for each policy, the fluid model has

a unique steady state solution. Finally, we establish an interchange

of limits between the stochastic and fluid models in steady state. We

use these results to compare the key performance metrics under the

two policies.

Our analysis shows that the DA policy has a greater capacity to

admit patients than the LS policy for all parameter choices. Further-

more, we numerically establish the existence of a threshold value,

such that the number of reassigned patients is smaller for the DA

policy than for the LS policy if and only if the arrival rate of patients

is greater than the threshold value. Since most hospitals operate at

near critical loads, our two findings lead to the conclusion that sched-
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ules which rely on shorter more frequent shifts than those found in

practice would increase admitting capacity and reduce the number of

reassigned patients.

1. Introduction.

1.1. Background and empirical results. In this paper, we study the effect of medical resident

schedules on hospitals’ capacity to admit patients and the quality of care delivered. This work is

motivated by an empirical study [1] conducted by the authors with Brigham and Women’s hospital

(B&W) in Boston. As a teaching hospital, the majority of patients at B&W have medical residents

as their caring doctor. When our study began, it was a common practice for residents to have

long work hours, with 80 hour work weeks and very long shifts, some extending to 36 continual

hours spent in the hospital [35]. However, over the last twenty years, concerns over the dangers of

resident fatigue, both for patients [15, 27, 33, 35], and residents [3, 4, 21, 35] have led to increasingly

stringent regulations on resident shifts, especially for those who are in their first year of residency.

Most recently, a new regulation that entered effect in August 2011 imposes a maximum shift length

of 16 hours [23]. Proponents of the long shifts are concerned primarily with patient continuity of

care. They argue that reducing shift lengths will result in more patient handoffs between caring

practitioners, increasing the chance of miscommunication and accidents [8, 31]. A particularly

undesirable type of handoff is a reassignment, when a patient is admitted temporarily by one

doctor and then is transferred to a resident for a permanent care. Reassignments are dangerous as

they greatly increase the risk of losing information that should be used in determining a course of

treatment. Additionally, long shift advocates additionally argue that reducing residents’ hours will

force hospitals to increase staffing levels to compensate for lost capacity to admit patients [37, 38].

The impact of shift schedules on the number of reassignments and admitting capacity are two main

questions we address in this paper.

We build a queueing model that compares the capacity and performance of different resident

schedules to determine the quality of long shift alternatives. Using this model, we show that policies

using shorter, more frequent shifts have a greater admitting capacity than policies using long less

frequent shifts, when the total number of hours spent admitting patients is the same. Furthermore,
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we show that scheduling policies based on frequent short shifts cause fewer reassignments when the

patient load is high. Since most of the hospitals operate at high load, this observation is relevant

to the majority of hospitals. Our theoretical results are substantiated with extensive empirical

estimations which are reported in [1], where these two main findings are verified in a number of

experiments based on real life data. In particular, we simulated the flow of patients in B&W hospital

under a four day rotating cycle Long shift–Off–Short shift–Off (LOSO) resident schedule, and a

similar six day variant. These were the schedules used in the hospital prior to the regulation of

2011. According to this schedule, at the beginning of the cycle a resident stays on a long (22-24

hour) shift, admits no patients the following day, then is on shift again for the morning of the third

day (5-7 hours), and finally admits no patients on the fourth day. Residents were organized into

a number of teams that was divisible by four with each team offset by a day so that the teams

would provide uniform coverage. We have compared the performance of the LOSO schedule with

an alternative schedule, called MMMO (Medium-Medium-Medium-Off). The schedule is also based

on a four day rotating cycle where for the first three days residents are on shift for 8 to 10 hours

and then have one day off. The shifts are set to provide more coverage during the peak of patient

arrivals (see Figure 1 for the arrival rates throughout the day) and thus the schedule is expected

to reduce the number of reassignments.

The results of our empirical studies are summarized on figure Figure 2, where we report the total

number of reassignments at the current patient load of about 3250 patients a year, as well as for

increased and decreased patient loads obtained by artificially changing the total number of patients

while maintaining the hourly, daily, and monthly arrival rate patterns. The results are consistent

with intuition one derives from queueing theory—we see a nonlinear degradation of the performance

as the utilization of the system increases. However, the results indicate that the performance of

LOSO degrades faster than the performance of MMMO, suggesting that the two policies have

fundamentally different capacities despite using the same total number of hours. Also, we see that

the MMMO schedule performs better at the current load of 3250 patients per year.

1.2. Our results and discussion. Motivated by these empirical findings, we build a stylized

queueing model of the patient flow in a hospital. Patients arrive according to a non-homogenous

Poisson process with rate λ1 in one half of each day (say 10am till 10pm) and rate λ2 ≤ λ1 in the

3



8am
12pm

4pm
8pm

12am
4am

8am

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Hour of Day

A
rr

iv
a
ls

P
er

H
o
u
r

B&W Oncology Daily Arrival Rate ’10

Fig 1. Average patient arrival rate by hour of day, B&W Oncology dept., 2009-10.
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Fig 2. Patient reassignments under increasing patient load, B&W Oncology dept., 2009-10. Actual patient load for
2009-10 was 3242.
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remaining part of the day. We consider two stylized policies to schedule the residents, which while

significantly simplifying the actual LOSO and MMMO policies discussed above, capture the salient

features of these policies. The formal description of the two policies is given in the next section.

Now we just provide a high level description and discuss their main features.

The first policy we analyze in this paper is the Long Shifts (LS) policy, motivated by the LOSO

policy above. According to this schedule two teams of residents with the same number of residents

in each team work for the duration of a day every other day, taking a day off after each day on shift.

Namely the first team works on days 2n+ 1, n ≥ 0 and the second team works on days 2n, n ≥ 1.

The second policy we analyze is called Daily Admitting (DA), and is motivated by the MMMO

policy. According to the DA policy, two teams of residents each with the same number of residents

as for the LS policy work every day during the high load (10am-10pm) half of the day, and a are

off-shift for the other half of the day. Both policies organize the residents into two teams that are

offset by a day in the rotating schedule, thus providing uniform coverage. The main distinction

between the LS and DA policies is that DA is based on adopting shorter more frequent shifts.

The arriving patients are assigned to residents according to the following mechanism used both

for the LS and DA schedules. Each resident has an upper bound (cap) on the number of patients he

is allowed to have in care. Each arriving patient is assigned to a resident chosen uniformly at random

from all residents on shift who have not reached their cap (in fact the analysis does not depend on

how patients are assigned to available residents for these policies). If all the residents are capped at

the arrival epoch, the patient joins the queue of unassigned patients and is cared for temporarily

by a doctor from a back-up supply of care providers. We assume that we have an infinite supply of

these providers, although using them is expensive in a sense to be described below. These patients

are subsequently assigned to a caring resident on the first come first serve basis, as soon as one of

them is available. Patients remain in the hospital for a random exponentially distributed amount

of time, beginning from when they are assigned to a resident. We make this assumption because in

practice, the newly arriving patients without an assigned resident are stabilized but the treatment

plan is not determined until they are assigned to a resident.

We now summarize our results. First, we determine the throughput capacity of each policy.

Specifically, for a given number of residents, we compute the maximum arrival rate at which patients
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can arrive before the queueing system becomes unstable, i.e., the number of unassigned patients

grows without bound. We show that DA has a greater throughput capacity than LS, independent of

the parameters of our model, supporting our hypothesis from Figure 2 that MMMO has a greater

capacity than LOSO.

Next, we compare the number of reassignments under LS and DA. In comparing policies, we

are interested in the expected number of reassignments per day in steady state. As direct steady

state analysis appears intractable, we instead resort to the method of fluid approximation of the

underlying queueing model. We analyze the long term behavior of the fluid model and show that

it converges to the unique steady state solution. The steady state fluid solution carries important

information about the long-term performance of the underlying stochastic system. In particular, we

prove an interchange of limits result, that the steady state number of patients being treated and the

number of patients waiting to be reassigned converges to the steady state fluid solution under the

appropriate rescaling. We obtain an implicit formula for the number of each type of reassignment

per day in the fluid limit that can be solved numerically. Under minor technical assumptions, we

also prove that the number of reassignments in the underlying stochastic model converges to this

value in the fluid rescaling, thus justifying fluid approximation. These results provide important

qualitative insights.

In particular, computing the number of reassignments under each policy from the fluid steady

state solution, we find that the DA policy leads to fewer reassignments than the LS policy when

the load is high, and leads to more reassignments than the LS policy when the load is low. These

findings are consistent with the observed behavior of LOSO and MMMO shown in Figure 2. Since

most hospitals tend to operate at high load, our results lead to the conclusion that the hospitals

should consider implementing schedules with shorter more frequent shifts, as it will increase the

capacity to admit patients and reduce the number of reassignments. In this sense the new regulation

restricting further the length of shifts should not be perceived as an impediment to efficient handling

of patients at hospitals.

1.3. Related literature. We now mention some other approaches considered in the field of opera-

tions research for capacity management in hospitals. A very general survey of capacity management

in healthcare is given in [18]. Simulation studies of capacity have been done for medical resident
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schedules [10, 25] and various other hospital resources [12, 24, 28, 32, 39]. However, as these sim-

ulations are incredibly sensitive to the details of each hospital’s operations, the results do not

generalize well to other hospitals. There are some recent papers which propose a queueing model of

patient flow in a hospital, and then solve for important performance metrics, either analytically [40],

asymptotically [9, 40, 41], numerically [34], or with heuristic methods [20]. Although not explicitly

about healthcare, in [22, 29], fluid models for queues with time varying arrival rates alternating

between overloaded and underloaded periods are considered. These models are more in the spirit

of our work than the previously cited models from a technical perspective, as transient behavior

and “end of day effects” (see [19]) play a prominent role.

1.4. Organization and Notational conventions. The remainder of the paper is organized as fol-

lows. The queueing model and its fluid limit are described Section 2 and the main results are stated

there. In Section 3 we numerically solve for the steady state behavior of the fluid model and discuss

the performance implications for our queuing model. Then we give some concluding remarks in

Section 4. The proofs of the main results are then in the appendix. In Appendix A.1, we exactly

characterize the stability of our queueing model under each policy using a simple linear Lyapunov

function type argument. In Appendix A.2, we use quadratic Lyapunov functions to bound the

expected steady state queue length. In Appendix A.3, we prove the existence of the fluid limits,

applying the results in [30]. Then in Appendix A.4, we show that the fluid limit has a consistent

periodic long run behavior under each policy, where the solution in each period is characterized

by a simple system of differential equations. In Appendix A.5, we prove that the long run solution

to the fluid model approximates the steady state queue lengths of the underlying queueing model.

Justifying this requires an argument for an “interchange of limits.” As in [16], we use our moment

bound from Appendix A.2 to show tightness of the rescaled stationary distributions, and then we

follow the technique of [13] and similarly [36] to prove the interchange of limits. In Appendix A.6, we

use the result of Appendix A.5 to show that the long run number of daily reassignments converges

in the fluid rescaling converges to a natural function of the fluid limit. Finally, we have two rather

technical sections: Appendix A.7, where we show several elementary properties of the solution to

a differential equation, and Appendix A.8, where we use another Lyapunov function argument to

distinguish between the null recurrent and transient cases in our queueing model.
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We conclude with a summary of the mathematical notation used in the paper. Throughout, R

(R+) denotes the set of (nonnegative) reals, and likewise, Z (Z+) denotes the set of (nonnegative)

integers. For a vector x ∈ Rn, ‖x‖p = (
∑n

i=1 x
p
i )

1/p
is the `p-norm. The `1 ball of radius r is denoted

Br(x) = {y ∈ R2 | ‖x − y‖1 < r}. For x, y ∈ R, x ∧ y = min{x, y} and (x)+ = max{x, 0}. We

define f(t−) as limτ↗t f(τ) when the limit exists. We let Exp(µ), Pois(λ), and Bin(n, p), denote

an exponential random variable with mean 1/µ, a Poisson random variable with mean λ, and

a Binomial random variable with mean np and variance np(1 − p), respectively (these moments

characterize the distributions). If the sequence of random vectors Xn, n = 1, 2, . . . , converges weakly

(in distribution) to X as n→∞, we say Xn ⇒ X. For a stochastic process X(t) in either discrete

or continuous time, Ex[X(t)] denotes E[X(t) | X(0) = x]. A sequence of continuous time vector

valued stochastic processes Xn(t) on a common probability space Ω converges almost surely (a.s.)

and uniformly on compact sets (u.o.c.) to a deterministic function x(t) if for every t > 0 and almost

every ω ∈ Ω,

lim
n→∞

sup
0≤s≤t

{‖Xn(s, ω)− x(s)‖1} = 0,

where ‖ · ‖1 is the 1-norm for vectors. See [7] for more details. As in [11] sections 11.2-11.3, for

functions f : Rn → R, we let ‖f‖L = supx,y∈Rn |f(x)− f(y)|/‖x− y‖1 denote Lipschitz semi-norm

(when f is a Lipschitz function, the value of this norm is the smallest Lipschitz constant that f

satisfies). We let ‖f‖BL = ‖f‖L + ‖f‖∞. This quantity is a true norm.

2. Model, Assumptions and Main Results. We begin by introducing our model of res-

idents admitting and treating a flow of incoming patients. The patients are assumed to arrive

according to a non-homogeneous Poisson process. For each k ∈ Z+, the process has rate λ1 over the

time intervals, [k, k+½) and rate λ2 < λ1 over the time intervals [k+½, k+1). Let let λ = (λ1+λ2)/2

denote the average arrival rate and

λ(t) =


λ1 t ∈ [k, k + ½),

λ2 t ∈ [k + ½, k + 1).

The intervals [k, k + 1) represent, for example, 24 hour cycles, where [k, k + ½) is the portion of

the day, say from 10am to 10pm, in which the vast majority of patients arrive (see Figure 1).
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The residents are combined into two teams, A and B, identical in size, which are eligible to admit

patients (are on shift) according a schedule to be described below. Each team has capacity c > 0

bounding the maximum number of patients the team can have in care. Each arriving patient is

assigned to one of the residents on a team, chosen uniformly at random, provided that at least one

of the teams on shift has not reached its capacity c. Note, that this is equivalent to saying that each

resident has in care capacity c/N , where N is the number of residents on each the team. If each on

shift teams has reached its capacity, the patient joins a single queue and is cared for by one of the

back-up doctors until one of the residents is available, at which point the waiting terminates, using

the First-In-First-Out assignment policy. The availability occurs either when one of the assigned

patients leaves the hospital freeing the capacity of one of the teams, or when one of the teams with

load less than c begins a shift.

At any time, each team is in one of two states, on shift or off shift, as specified by a policy.

Patients remain assigned to a team until they leave the hospital. The durations of hospital stays

are assumed to be i.i.d. and exponentially distributed with rate µ. That the random length of

treatment time each patient requires begins accumulating at the moment of assignment to a team,

and continues to accumulate when team is off shift. How this corresponds to actual practices is

explained in the introduction.

We consider two scheduling policies controlling when each team is on shift, Long Shifts (LS)

motivated by LOSO, and Daily Admitting (DA), motivated by MMMO (see the introduction for

descriptions of LOSO and MMMO). LS is a two day rotating schedule. Team A is on shift on odd

days, i.e. [2k + 1, 2k + 2) for all k ∈ Z+, and off shift otherwise. Similarly, team B is on shift for

even days, i.e. [2k, 2k+1) for all k ∈ Z+, and off otherwise. In DA, both teams A and B are on shift

every day for the first half of each day, i.e. [k, k + ½) for all k ∈ Z+, and off otherwise, effectively

creating a single team with double the capacity.

To state our results, it will be convenient to introduce the following quantities describing the

dynamics of our model. For t ≥ s ≥ 0, let A(s, t) denote the number of patients that arrive in the

time interval [s, t] according to our non-homogeneous Poisson process. For each policy θ ∈ {LS,DA},

let Qθ(t) denote the number of patients in the queue not yet assigned to a team plus the number of

patients assigned to the teams that are on shift at time t. For each θ ∈ {LS,DA}, let Rθ(t) denote
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the total number of patients currently assigned to teams which are off shift at time t. Further, for

each θ ∈ {LS,DA} we introduce the random vector Sθ(t) = (Qθ(t), Rθ(t)), which we take to be the

state of our system. The processes Qθ(t), Rθ(t), and Sθ(t) are assumed to be right-continuous with

left limits. For every s < t, we let Don
θ (s, t) denote the total number of patients which departed

in the time interval [s, t] from the teams which were on shift in this period. We define Doff
θ (s, t)

analogously.

Under the policy LS, for each k ∈ Z+ and each t ∈ [0, 1), QLS and RLS satisfy

QLS(k + t) = QLS(k) +A(k, k + t)−Don
LS(k, k + t),(1)

RLS(k + t) = RLS(k)−Doff
LS(k, k + t).(2)

On [k, k + 1), we see that in distribution QLS(t) behaves exactly as the total number of customers

in system for an M(t)/M/c queue with arrival rate λ(t), service rate µ, and initial value QLS(k).

Similarly, on [k, k + 1), RLS(t) behaves as an M/M/c system with no arrivals, service rate µ, and

initial value RLS(k). At each time k ∈ Z+ a transition occurs: the off shift team switches to on

shift and vice versa, and patients that are waiting can get assigned to the team rotating on shift.

In terms of QLS and RLS, this can be described as follows:

QLS(k) = (QLS(k−)− c)+ +RLS(k−),

RLS(k) = QLS(k−) ∧ c.

We define operator Γ : R2
+ × R+ → R2

+ by

Γ(q, r;κ)
∆
= (q − κ)+ + r, q ∧ κ),(3)

and note that we can equivalently write

SLS(k) = Γ(SLS(k−); c).(4)

The equations (1), (2) and (4) along with a distribution of the initial states SLS(0) completely

determine the distribution of SLS(t) for all t ∈ R+. It is immediate that on integer times, the

process SLS(k) is a two dimensional Markov chain on the countable state space Z+ × {0, 1, . . . , c}.

Moreover, without loss of generality we can restrict the state space to the set,

SLS
∆
= {0, . . . , c}2 ∪ {(q, c) | q ∈ Z+},(5)
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as this set is the image of Γ(·; c) when we take the domain to be Z+×{0, 1, . . . , c}. Thus SLS(k) ∈ SLS

for all k ≥ 1 with probability one.

We now describe similar relations for the policy DA. For every k ∈ Z+ and every t ∈ [0, ½),

QDA(k + t) = QDA(k) +A(k, k + t)−Don
DA(k, k + t),

RDA(k + t) = 0,

(6)

where on [k, k + ½), the process QDA(t) has the same distribution as an M/M/2c queue with an

arrival rate of λ1, a service rate of µ and an initial value of QDA(k). At time k + ½, both teams

move off shift, resulting in the transition

QDA(k + ½) = (QDA((k + ½)−)− 2c)+,

RDA(k + ½) = QDA((k + ½)−) ∧ 2c.

Equivalently, in terms of Γ,

SDA(k + ½) = Γ(SDA((k + ½)−); 2c).(7)

On [k + ½, k + 1),

QDA(k + ½ + t) = QDA(k + ½) +A(k + ½, k + ½ + t),

RDA(k + ½ + t) = RDA(k + ½)−Doff
DA(k + ½, k + ½ + t).

(8)

Now on [k + ½, k + 1), QDA(k + ½ + t) changes according to a Poisson process with arrival rate λ2,

and R(t) is an M/M/2c queue with no arrivals and service rate µ. At integer times, we have a

second shift change, this time leading to

QDA(k + 1) = QDA((k + 1)−) +RDA((k + 1)−),

RDA(k + 1) = 0.

Equivalently, in terms of Γ,

SDA(k + 1) = Γ(SDA((k + 1)−); 0).(9)

Equations (6), (7), (8) and (9) along with the distribution over the initial states SDA(0) determine

the distribution of SDA(t) for all t ∈ R+. Again on integer times, the process SDA(k) is a Markov
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chain on the countable state space. However, now the state space is the one-dimensional set

SDA
∆
= Z+ × {0},(10)

as RDA(k) = 0 for all k ∈ Z+.

We are now ready to discuss our main results. We define the stochastic process Sθ(t) to be

stable if the embedded discrete time process Sθ(k) for k ∈ Z+ is positive recurrent, and unstable

otherwise. Normally we define stability for this type of problem as positive Harris recurrence of the

process Sθ(t), t ∈ R+. However, it is easy to see that in our case these definitions are equivalent,

and further that the former definition is much easier to work with.

Observe that under both policies, Rθ(k) is bounded hence Qθ(k) is the only potential source

of instability. Thus when Sθ(t) is unstable, with probability one, the number of patients waiting

to be assigned to a resident team will grow without bound. Note that in reality, when a hospital

has a large number of patients waiting, it reroutes incoming patients to other hospitals to reduce

congestion, so instability would actually correspond to the hospital frequently being forced to turn

patients away—clearly a very undesirable situation.

We now discuss conditions under which Sθ(t) is stable. Before formally stating our results, we

provide some intuition. Let Lc(t) and L2c(t) be the number of patients in system for an M(t)/M/c

queue and M(t)/M/2c queue both driven by the arrival process A(0, t), respectively. For LS, it is

not difficult to see that we can couple SLS(t) with Lc(t) and L2c(t) such that surely, for every t,

L2c(t) ≤ QLS(t) +RLS(t) ≤ Lc(t).

The inequalities hold as the process SLS(t) has capacity between c and 2c at all times t. Similarly,

we can couple SDA(t) and L2c(t) such that

L2c(t) ≤ QDA(t) +RDA(t).

Recall from basic queueing theory that the process Lc(t) is positive recurrent iff λ < cµ and L2c(t)

is positive recurrent iff λ < 2cµ. In light of our coupling, we thus expect the maximum throughput

(the largest λ = (λ1 + λ2)/2 such that Sθ(t) is stable) of SLS(t) to lie between cµ and 2cµ, and

likewise we expect the maximum throughput of SDA(t) to be at most 2cµ. This suggests that we

need to determine to what extent each policy can utilize the 2c total capacity available to treat
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patients, or conversely how much forced idling is caused under each policy by a team’s inability to

admit new patients when off shift. To this end, we let

ρLS
∆
=

λ

c(1− e−µ) + cµ
,(11)

ρDA
∆
=

λ

2c(1− e−µ/2) + cµ
.(12)

We intend to show that Sθ(t) is positive recurrent iff ρθ < 1 for each θ. These values of ρθ imply

that

λ∗LS
∆
=

λ

ρLS
= c(1− e−µ) + cµ, λ∗DA

∆
=

λ

ρDA
= 2c(1− e−µ/2) + cµ,

give the maximum throughput of SLS(t) and SDA(t), respectively. Thus our main stability result is

as follows.

Theorem 1. For each θ ∈ {LS,DA}, the process Sθ(t) is positive recurrent when ρθ < 1,

null recurrent when ρθ = 1, and transient when ρθ > 1. Namely, the process Sθ(t) is stable iff

ρθ < 1. Furthermore, ρDA < ρLS. In particular, the Daily Admitting policy has a greater maximum

throughput.

The intuition behind the result is that the queue will be stable as long as conditional on the

queue being large, the expected number of arrivals per day is less than the expected number of

departures per day. Independent of the initial queue length, we expect λ arrivals per day. For the

sake of argument, assume the initial queue length were infinite, so the resident teams are only idle

when they are off shift and have completed caring for their initial patients.

Under the policy LS, in a single day the team on shift has c patients in care at all times each

recovering at rate µ, producing Pois(cµ) departures. Thus the expected number of departures from

the team on shift is cµ. For the team off shift, as we assumed there were infinitely many patients

initially in care, we begin with all c capacity utilized. Again patients depart at rate µ, but now when

they leave they are not replaced. The probability a patient will depart is P(Exp(µ) ≤ 1) = 1− e−µ.

As whether or not each patient departs is independent, we have Bin(c, 1− e−µ) departures, so the

expected number of departures from the team off shift is c(1− e−µ). Thus the expected change for

the number of patients in the system is given by

−γLS
∆
= λ− cµ− c(1− e−µ).
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Recalling that we expect the system to be stable when γLS > 0, we see from (11) that this is

equivalent to ρLS < 1. Performing a similar computation for DA, we see that in a single day there

are Pois(cµ) on shift departures and Bin(2c, 1 − e−µ/2) off shift departures, giving an expected

change in the number of patients in system of

−γDA
∆
= λ− cµ− 2c(1− e−µ/2).

Thus the queue should be stable if γDA > 0, or equivalently from (12), when ρDA < 1. To show

ρDA < ρLS, it suffices to show that 2− 2e−µ/2 > 1− e−µ, which follows since

1− 2e−µ/2 + e−µ = (1− e−µ/2)2 > 0.(13)

As cµ + 2c(1− e−µ/2) < 2cµ, we see that DA still results in fewer expected departures than an

M/M/2c queue. However, if we are willing to consider schedules with more shift changes per day,

we can achieve an expected number of departures arbitrarily close to our “upper bound” of 2cµ

by generalizing the policy DA. Given k > 0 integer and even, consider the schedule where both

teams are on shift for [i/k, (i + 1)/k) for all i even (the case of i = 2 is simply the policy DA).

This divides the day into k equally sized pieces, where for k/2 such pieces both teams are on shift,

and for the remaining k/2 periods both teams are off shift. We see immediately that independent

of k, each team still spends half of each day on shift. In this half day on shift, our two teams’ 2c

capacity will again have Pois(cµ) departures. Now in each of our off shift periods, the probability of

a patient leaving is P(Exp(µ) ≤ 1/k) = 1− e−µ/k, so we have Bin(2c, 1− e−µ/k) off shift departures

in each of our k/2 off shifts, or Bin(kc, 1 − e−µ/k) off shift departures per day. Thus the expected

off shift departures per day is kc(1− e−µ/k). Letting k →∞, we see through Taylor expansion that

our off shift departures tend to cµ, giving 2cµ total departures as with the M/M/2c queue. While

in practice, we cannot have arbitrarily short shifts, we do see a general trend that shorter shifts

increase capacity.

The stability property however is not the only relevant performance measure. An important

quantity to look at is the number of patient reassignments (i.e. the number of arriving patients

forced to wait due to the non-availability of residents, as discussed in the introduction). For each

policy θ ∈ {LS,DA}, we can easily verify that Sθ(k) is irreducible and aperiodic on Sθ. Thus under

the condition ρθ < 1, there exists a unique steady state distribution for Sθ(t), and we denote this
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random vector by Sθ(∞). Analyzing Sθ(∞) directly appears to be intractable. Instead, we resort

to the method of fluid approximation, which we now define.

Given the parameters of our queueing model λ1, λ2, µ and c, we consider a sequence of approx-

imate models n = 1, 2, . . ., where we change the parameters so that in the nth model, λn1 = λ1n,

λn2 = λ2n, µn = µ, and cn = cn. In words, the rate of patient recovery is fixed, but the patient ar-

rival rates and patient capacity scale up linearly. For each policy θ ∈ {LS,DA}, we let Qnθ (t), Rnθ (t)

and Snθ (t) be the corresponding processes. We let Snθ be the set Sθ as defined in (5) and (10) for the

processes Snθ (t). The process associated with fluid rescaling is defined as Snθ (t)/n. We immediately

note by (11) and (12) that ρθ does not change with n, so the stability criteria for each Snθ (t) is

the same. Thus for ρθ < 1 the sequence Snθ (∞)/n is well defined. Our next main result is that as

n→∞, the sequences Snθ (t)/n and Snθ (∞)/n converge meaningfully to some deterministic process

sθ(t) = (qθ(t), rθ(t)), and its unique fixed point limk→∞ sθ(k), respectively. We now provide details.

For LS, we define the process sLS(t) = (qLS(t), rLS(t)) on R+ × [0, c] inductively on intervals

[k, k + 1). For each interval, consider the system of ordinary differential equations (ODEs)

q̇LS(t) = λ(t)− µ(qLS(t) ∧ c),(14)

ṙLS(t) = −µrLS(t).(15)

At integer times k ≥ 1, the process jumps as did SLS(k). Specifically, we let

sLS(k) = Γ(sLS(k−); c).(16)

In analogy with SLS, we will show that at integer times k ≥ 1 this process is actually restricted to

TLS
∆
= [0, c]2 ∪ R+ × {c}.(17)

We now give a similar construction for sDA(t) = (qDA(t), rDA(t)) on R+ × [0, 2c]. Again for each

interval [k, k + ½), we let rDA(t) = 0 and define qDA(t) by

q̇DA(t) = λ1 − µ(qDA(t) ∧ 2c).(18)

At times k + ½, k ∈ Z+, we let

sDA(k + ½) = Γ(sDA((k + ½)−); 2c).
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For each interval [k + ½, k + 1), qDA(t) and rDA(t) are defined by the following ODEs:

q̇DA(t) = λ2,

ṙDA(t) = −µrDA(t).

Again at integer times k ≥ 1, we define

sLS(k) = Γ(sDA(k−); 0).

We let

TDA
∆
= R+ × {0}.(19)

We will show that this is the set of possible values sDA(k) can take for integer k ≥ 1.

Proposition 1. For every θ ∈ {LS,DA}, and every sθ(0) ∈ Tθ, sθ(t) exists and is uniquely

defined for all t ∈ R+. Further, for all integer k ≥ 1, sθ(k) ∈ Tθ.

The result is shown in Appendix A.4. We now formally relate Sθ(t) to sθ(t).

Theorem 2. For each θ ∈ {LS,DA}, if Snθ (0)/n→ sθ(0) a.s., then

lim
n→∞

Snθ (t)

n
= sθ(t),

a.s. and u.o.c.

While this theorem allows us to approximate Sθ(t) by the simpler process sθ(t), we have not

established any relationship between Sθ(∞) and sθ(k) as k → ∞. We do this next, but first we

need some definitions.

Suppose we are given a discrete time dynamical system on a state space X ⊂ Rn defined by

f : X → X , i.e. xk+1 = f(xk) for all k. A point x∗ is defined to be attractive if for all x0 ∈ X ,

lim
n→∞

xn = x∗.

Note that there can be at most one attractive point. We now state our next result relating sθ(∞)

and Sθ(∞).
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Snθ (k) Snθ (∞) W i,n
θ (∞)

sθ(k) sθ(∞) wiθ(∞)

Theorem 1

k → ∞

Theorem 2 lim
n→∞

Snθ (k)

n

Theorem 3

k → ∞

Theorem 3 lim
n→∞

Snθ (∞)

n
Corollary 1 lim

n→∞

W i,n
θ (∞)

n

Fig 3. A diagram explaining how each of our theorems relate our stochastic process and the fluid limit, for finite
times, at steady state, and then finally for the steady state number of reassignments.

Theorem 3. For each policy θ ∈ {LS,DA}, the sequence sθ(k) has a unique attractive point

sθ(∞) ∈ Tθ iff ρθ < 1. Moreover, when ρθ < 1, the following convergence in probability takes place:

lim
n→∞

Snθ (∞)

n
= sθ(∞).

Notice that condition for the existence of an attractive point for sθ(t) is exactly the same

as the stability condition for Sθ(t). In the second claim of Theorem 3, we are essentially jus-

tifying an interchange of limits, as informally we are “equating” limn→∞ limk→∞ Snθ (k)/n with

limk→∞ limn→∞ Snθ (k)/n, as shown in the left half of Figure 3.

We now use this result to approximate the steady state number of reassignments in the queueing

model. For each θ ∈ {LS,DA} and each k ∈ Z+, let W 1
θ (k) (resp. W 2

θ (k)) be the number of arriving

patients during [k, k + ½) (resp. [k + ½, k + 1)) that are forced to wait a nonzero amount of time

before assignment to a resident, i.e. the number of reassignments. Similarly, when ρθ < 1, we define

W 1
θ (∞) (resp. W 2

θ (∞)) to be the steady state number patients forced to wait during [0, ½) (resp.

[½, 1)). Next we define variables for the fluid approximations of these quantities. Let bθ(t) be

bLS(t) = I{qLS(t)≥c},(20)

bDA(t) =


I{qDA(t)≥2c} t ∈ [k, k + ½),

1 t ∈ [k + ½, k + 1),

(21)
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i.e. bθ(t) is the indicator that the on shift teams are saturated. We define

w1
θ(k) =

∫ k+½

k
bθ(t)λ1dt,(22)

w2
θ(k) =

∫ k+1

k+½

bθ(t)λ2dt.(23)

When ρθ < 1, we let w1
θ(∞) = w1

θ(0) and w2
θ(∞) = w2

θ(0) assuming the fluid system begins in

steady state, i.e. sθ(0) = sθ(∞). We next argue that w1
θ(∞) and w2

θ(∞) asymptotically describe

the steady state number reassignments. Let W 1,n
θ (k) and W 2,n

θ (k) be the number of reassignments

for Snθ (t) from our fluid approximation. Then

Corollary 1. For policy LS, assuming λ1, λ2 6= cµ, and for policy DA, assuming λ1 6= 2cµ,

the following convergence in probability takes place:

lim
n→∞

W 1,n
θ (∞)

n
= w1

θ(∞),

lim
n→∞

W 2,n
θ (∞)

n
= w2

θ(∞).

The case when λj = cµ for either j = 1, 2 presents some annoying technical difficulties. As

realistically we will never have exact equality, we do not pursue this issue further. This sequence of

results justifies approximating W 1
θ (∞) and W 2

θ (∞) by w1
θ(∞), w2

θ(∞), respectively. The result of

Corollary 1 are summarized in the right half of Figure 3.

3. Numerical Results. In this section, we numerically solve for the steady state solution

of the fluid model of each policy. We then compare the cost of the reassignments in a single

day starting at steady state under each policy as we vary the average arrival rate. We relate our

numerical observations to our empirical observations from Figure 2.

Throughout this section, we use the following parameters in our model: µ = 1/2, c = 40,

λ1 = 9λ/5, and λ2 = λ/5. Our choice of µ and c imply that λ∗LS ≈ 35.7388 and λ∗DA ≈ 37.6959. The

value of c and the ratio of λ1 to λ2 were chosen to be representative of a department from a large

hospital such as B&W. The value of µ must be chosen more carefully. In light of Remark 1, we set

µ to control the relative sizes of the average length of stay and length of time between shifts. At

B&W under the policy LOSO, there is a long shift every four days and the average patient length
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of stay is four days. Thus in our model we set the average length of stay (1/µ) to be two days as

the policy LS has a long shift every two days.

In Figure 4, we fix λ at 34 and observe the steady state behavior of our two policies in the fluid

limit over the course of a day. Notice that λ < λ∗LS < λ∗DA, so under both policies the fluid model

is stable, but heavily loaded. We see that for both policies, under these particular parameters, the

number of patients being treated by the teams on shift plus the number of patients waiting, qθ(t),

increases over the first half of day. For LS, the capacity of 40 for the teams on shift (as indicated by

the dotted black line) is exceeded, and resulting in some reassignments. For DA however, as both

teams are working during the first half of the day, we stay below the capacity of 80 patients and

have no reassignments. In the second half of the day, under LS we see that the backlog of patients

subsides and we return below 40 patients by the end of the day. For DA, as both teams are off shift

during the second half of the day, we see a jump at time 1/2 between qDA and rDA and then small

backlog of arrivals accumulate in the second half of the day.

In Figure 5, we show the number of reassignments for each policy in [0, ½) and [½, 1) as we vary

λ. The dotted vertical lines indicate λ∗LS and λ∗DA, the largest patient arrival rates such that LS

and DA are stable. We see that our observation from Figure 4, that LS had many reassignments in

[0, ½) while DA had no reassignments in this period, is typical when the system is heavily loaded

(for λ near λ∗LS). We also see in Figure 5 that when λ is low, both polices cause no reassignments

in the first half of the day, and only DA causes reassignments in the second half the day. As λ

increases towards λ∗LS, we see LS begin to reassign nearly all patients, while DA continues to only

reassign patients arriving in the second half of the day. Finally, for very large λ, we eventually see

DA reassigning some patients during the first half of the day. While for these particular parameter

settings, we only see DA reassignments in the first half of the day for λ so large that LS is unstable,

this does not hold for all parameter settings. Interestingly, we see that under DA for λ near λ∗DA,

the number of reassignments does not approach λ, while it does for LS. This is occurring as under

these parameters, we have more patients leaving than arriving in the second half of the day, creating

some spare capacity during the start of the first half of the following day.

Comparing Figure 5 with our empirical observations from Figure 2 we see that the relationship

between LS and DA is qualitatively similar to the relationship between the B&W policies LOSO
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Fig 4. Steady state number of patients in system in the fluid limit under each policy. Parameter values: λ = 34,
λ1 = 9λ/5, λ2 = λ/5, µ = 1/2, c = 40.

and MMMO. Most importantly, we have preserved the property that shorter more frequent shifts

are the better policy when the patient load is heavy.

4. Conclusion. We have developed a queueing model to determine the effect of long shifts

in medical resident schedules on the hospital’s capacity to admit patients and the quality of care

delivered. Our model was motivated by the empirical work [1] on scheduling medical residents for

B&W hospital. In this paper, we compared the stylized schedules Long Shifts (LS), where residents

worked 24 hour shifts on alternating days, and Daily Admitting (DA), where residents worked every

day but only during peak arrival hours. We used Lyapunov function techniques to characterize the

stability of our queueing model under each policy. We found that DA has a greater capacity to admit

patients than LS for all parameter choices. To analyze the long-run performance of our queueing

model, we first considered the associated fluid model, which is a deterministic system with periodic

dynamics. We showed that under each policy, when the queueing model is stable, the fluid model

had a unique periodic steady state solution. We showed that our queueing model under the fluid

rescaling converges to the fluid model on finite time intervals. Then we used an interchange of

limits argument to show that the steady state queue lengths under the fluid rescaling converge

to the unique steady state solution of the fluid model. We use these results to approximate the
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Fig 5. Steady state number of patient reassignments in the fluid limit for different λ under each policy. Parameter
values: λ1 = 9λ/5, λ2 = λ/5, µ = 1/2, c = 40.

steady state number of reassignments in our queueing model by the steady state behavior of the

fluid model. Numerically solving for the steady state of the fluid model under various parameter

choices, we found evidence suggesting the existence of a threshold value on the arrival rate such

that DA causes fewer reassignments than LS iff the arrival rate exceeds the threshold value. These

results substantiate the main empirical findings in [1]. The issue of resident schedules is currently

quite pertinent, as new regulations restrict residents to a maximum shift length of 16 hours [23].

Our work contributes to understanding the implication of the new regulation. As hospitals tend to

operate in heavily loaded regimes, we find that schedules relying on shorter more frequent shifts

could increase capacity and reduce reassignments.
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APPENDIX A: PROOFS

A.1. Stability conditions for two schedules. Proof of Theorem 1. In this section, we

prove Theorem 1, characterizing the stability of Sθ(t). We show these results using the method of

Lyapunov functions, which we describe next. Let {Xk} be a discrete time irreducible Markov chain

on a countable state space X ⊂ Zd. First we give a condition for the positive recurrence of {Xk}

due to Foster (see [2]).

Proposition 2. If there exists a function V : X → R, γ > 0, and a finite set B ⊂ X such that

for all x ∈ B,

Ex[V (X1)− V (X0)] <∞,(24)

and for all x ∈ X \B,

Ex[V (X1)− V (X0)] ≤ −γ,

then {Xk} is positive recurrent.

A function V satisfying these properties is usually called a Lyapunov function. Lyapunov func-

tions can also be used to prove {Xk} is not positive recurrent when the drift is nonnegative. The

following is a special case of Proposition 5.4 from [2].

Proposition 3. Suppose there exists a Lyapunov function V : X → R, a finite set B ⊂ X and
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a state y ∈ X \B satisfying

sup
x∈B

V (x) < V (y),(25)

sup
x∈X

Ex

[
(V (X1)− V (X0))2

]
<∞,(26)

inf
x∈X\B

Ex[V (X1)− V (X0)] ≥ 0.(27)

Then {Xk} is either null recurrent or transient.

Returning to our model, we now let the Lyapunov function V : Sθ → R+ be defined by V (q, r) =

q + r for the Markov chain {Sθ(k)}. We first analyze the drift under the policy LS, namely

E[V (SLS(1)) − V (SLS(0))]. Let A
∆
= A(0, 1), Don

LS
∆
= Don

LS(0, 1), and Doff
LS

∆
= Doff

LS(0, 1) denote the

number of arrivals and departures in a single day under LS.

Lemma 1. We have

−γLS = lim
q→∞

E(q,c)[V (SLS(1))− V (SLS(0))] = inf
(q,r)∈SLS

E(q,r)[V (SLS(1))− V (SLS(0))].(28)

Additionally, there exists a constant CLS > 0 depending only on µ such that

sup
(q,r)∈SLS

E(q,r)[(V (SLS(1))− V (SLS(0)))2] ≤ λ2 + λ+ CLS(c2 + c).(29)

Proof. First, observe that the value of the Lyapunov function does change at time 1:

V (SLS(1)) = V (Γ(SLS(1−); c)) = V (SLS(1−)),(30)

as applying Γ does not change the number of patients in system. Thus for ` = 1, 2,

E(q,r)

[
(V (SLS(1))− V (SLS(0)))`

]
= E(q,r)

[
(V (SLS(1−))− V (SLS(0)))`

]
= E(q,r)

[
(A−Don

LS −Doff
LS)`

]
.(31)

Let D̃on
LS

d
= Pois(cµ) and D̃off

LS
d
= Bin(c, 1 − e−µ) such that D̃on

LS, D̃off
LS, and A are independent. As

Don
LS(0, t) for 0 ≤ t < 1 has the distribution of the departure process for an M(t)/M/c queue, we

can couple Don
LS with D̃on

LS such that regardless of SLS(0),

Don
LS ≤ D̃on

LS.(32)
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For the off shift departures, as the patient length of stay is exponential, each of the r = R(0) ≤ c

patients in care will depart in the interval [0, 1) with probability 1 − e−µ independently of other

patients. Thus Doff
LS

d
= Bin(r, 1− e−µ), so trivially it can be coupled with D̃off

LS such that

Doff
LS ≤ D̃off

LS,(33)

with equality when r = c. From (32) and (33) we obtain that for any initial condition S(0) =

(q, r) ∈ SLS

A−Don
LS −Doff

LS ≥ A− D̃on
LS − D̃off

LS.

Taking expectations and then the infimum over all (q, r) ∈ SLS, we obtain that

inf
(q,r)∈SLS

E(q,r)[V (SLS(1))− V (S(0))] ≥ λ− cµ− c(1− e−µ) = −γLS.

Observe that for any realization where Q(0) = q and Don
LS ≤ D̃on

LS ≤ q − c, we also have QLS(t) ≥ c

for all t ∈ [0, 1−), and thus Don
LS = D̃on

LS. As a result,

E(q,c)[D
on
LS] ≥ E(q,c)

[
Don

LSI{D̃on
LS≤q−c}

]
= E

[
D̃on

LSI{D̃on
LS≤q−c}

]
.(34)

Since almost surely

lim
q→∞

D̃on
LSI{D̃on

LS≤q−c}
= D̃on

LS,

by monotonicity of expectation and then the Monotone Convergence Theorem, we obtain that

lim inf
q→∞

E(q,c)[D
on
LS] ≥ lim

q→∞
E[D̃on

LSI{D̃on
LS≤q−c}

] = E[D̃on
LS] = cµ.

Combining this inequality with (32), we obtain limq→∞ E(q,c)[D
on
LS] = cµ and thus

lim
q→∞

E(q,c)[V (SLS(1))− V (SLS(0))] = λ− c(1− e−µ)− cµ = −γLS.

Lastly, to show (29), using independence, (32), and (33),

sup
(q,r)∈SLS

E(q,r)[(A−Don
LS −Doff

LS)2] ≤ E[A2] + E[(D̃on
LS)2] + E[(D̃off

LS)2] + 2E[D̃on
LS]E[D̃off

LS]

= λ2 + λ+ c2µ2 + cµ+ c(1− e−µ)e−µ + (c(1− e−µ))2 + 2c2µ(1− e−µ).
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We now give an analogous result to the previous lemma for DA. As the proof is nearly the same,

some details have been omitted. As before, let Don
DA

∆
= Don

DA(0, ½) and Doff
DA

∆
= Doff

DA(½, 1), give the

number of departures under policy DA in a single day (note that there is no one on shift during

[½, 1) and no one off shift during [0, ½) under DA).

Lemma 2. We have

−γDA = lim
q→∞

E(q,0)[V (SDA(1))− V (SDA(0))] = inf
(q,r)∈SDA

E(q,r)[V (SDA(1))− V (SDA(0))].(35)

Additionally, there exists a constant CDA > 0 depending only on µ such that

sup
(q,r)∈SDA

E(q,r)[(V (SDA(1))− V (SDA(0)))2] ≤ λ2 + λ+ CDA(c2 + c).(36)

Proof. Again, for any initial state SDA(0) = (q, 0), V (SDA(1)) = V (SDA(1−)) and V (SDA(½)) =

V (SDA(½−)), as applying Γ at times ½ and 1 does not change the number of patients in system.

Thus for ` = 1, 2,

E(q,0)[(V (SDA(1))− V (SDA(0)))`] = E(q,0)

[
(A−Don

DA −Doff
DA)`

]
.(37)

Let D̃on
DA

d
= Pois(cµ) and D̃off

DA
d
= Bin(2c, 1 − e−µ/2) such that D̃on

DA, D̃off
DA, and A are independent.

As Don
DA(0, t) for 0 ≤ t < ½ has the distribution of the departure process for an M(t)/M/2c queue,

we can couple Don
DA(0, ½−) with D̃on

DA such that regardless of SDA(0),

Don
DA ≤ D̃on

DA.(38)

For the off shift departures, as the patient length of stay is exponential and thus memoryless, each

of the RDA(½) ≤ 2c patients in care will depart in the interval [½, 1) with probability 1 − e−µ/2

independently of other patients. Thus Doff
DA

d
= Bin(RDA(½), 1 − e−µ/2), so it can be coupled with

D̃off
DA such that

Doff
DA ≤ D̃off

DA,(39)

with equality when RDA(½) = 2c. From (38) and (39) we obtain that for any (q, 0) ∈ SDA,

A−Don
DA −Doff

DA ≥ A− D̃on
DA − D̃off

DA,
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and thus by taking expectations

inf
(q,r)∈SDA

E(q,r)[V (SDA(1))− V (SDA(0))] ≥ λ− cµ− 2c(1− e−µ/2) = −γDA.

As before, to complete showing the three term equality in (35), it suffices to show limq→∞ E(q,0)[V (SDA(1))−

V (SDA(0))] = −γDA. Given QDA(0) = q, for any realization such that Don
DA ≤ D̃on

DA ≤ q−2c, we have

QDA(t) ≥ 2c for all t ∈ [0, ½−), and thus Don
DA = D̃on

DA. Further, QDA(½−) ≥ 2c ensures RDA(½) = 2c

and thus Doff
DA = D̃off

DA. As a result,

E[Don
DA] ≥ E

[
Don

DAI{D̃on
DA≤q−2c}

]
= E

[
D̃on

DAI{D̃on
DA≤q−2c}

]
,

E[Doff
DA] ≥ E

[
Doff

DAI{D̃on
DA≤q−2c}

]
= E

[
D̃off

DAI{D̃on
DA≤q−2c}

]
.

We can apply the Monotone Convergence Theorem as before but now on both D̃on
DAI{D̃on≤q−2c}

and D̃off
DAI{D̃on≤q−2c} to obtain the desired limit. The rest of the proof is exactly as in the previous

lemma.

Proof of Theorem 1.. Suppose ρθ < 1, i.e. γθ > 0. From (28) of Lemma 1, we obtain that

−γLS = lim
q→∞

E(q,c)[V (SLS(1))− V (SLS(0))].

Similarly, from (35) of Lemma 2, we

−γDA = lim
q→∞

E(q,0)[V (SDA(1))− V (SDA(0))].

Recall by (5) that for every (q, r) ∈ SLS, when q ≥ c, we must have r = c, and by (10) for every

(q, r) ∈ SDA we have r = 0. Thus the sets

Bθ =

{
(q, r) ∈ Sθ

∣∣∣∣ E(q,r)[V (Sθ(1))− V (Sθ(0))] > −γθ/2
}
,

are finite. Observe that for both LS and DA, (24) is satisfied by (29) and (36), respectively. Applying

Proposition 2, taking B = Bθ and γ = γθ/2, we conclude that {Sθ(k)} is positive recurrent.

Now suppose instead that ρθ ≥ 1, i.e. γθ ≤ 0. In the setting of Proposition 3, for both θ we

take Bθ = {(0, 0)} and observe that (25) is trivially satisfied by taking y = (q, r) for any nonzero

(q, r) ∈ Sθ. The condition in (26) is satisfied by (29) for LS and (36) for DA. Finally, (27) is satisfied

as by (28) and (35), we have

inf
(q,r)∈Sθ

E(q,r)[V (Sθ(1))− V (Sθ(0))] = −γθ ≥ 0.
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Thus from Proposition 3 we conclude that {Sθ(k)} is either null recurrent or transient.

It remains to show that {Sθ(k)} is null recurrent when ρθ = 1 and transient when ρθ > 1. To

do so, we use another Lyapunov function argument, Theorem 3.2 from [26], (see also [14] section

3.6). However, as the statement of this theorem is rather technical, we defer this part of the proof

to Appendix A.8.

Finally, that ρDA < ρLS follows from (13).

Remark 1. Note that as µ → 0, (1 − e−µ/2)2 → 0, so by (13) we see that ρLS − ρDA → 0 as

well. Intuitively, if patients take many days to recover, the amount of forced idle time due to not

being able to admit patients while off shift will be negligible. Conversely, when µ is large,

ρLS ≈
λ

cµ+ c
, ρDA ≈

λ

cµ+ 2c
.

In this regime, nearly all patients recover in each off shift. When c is also large, we see DA has

a larger stability region, due to the off shifts for each team being shorter. While this regime isn’t

particularly relevant in the hospital setting, where µ ≈ 1/4, it exposes another interesting and

relevant parameter, namely the length of the time between shifts relative to the recovery rate µ.

A.2. Uniform bounds for stationary performance measures. In this section, we consider

the sequence of systems under the fluid rescaling Snθ (t)/n with the assumption that ρθ < 1, and

give bounds on the expected stationary queue lengths that are independent of n. In the notation of

Proposition 2 and Proposition 3, again suppose {Xk} is a discrete time irreducible Markov chain

on a countable state space X ⊂ Zd. Further, suppose that {Xk} is positive recurrent, and let X∞

denote the unique steady state distribution. We now give a bound on the first moment of f(X∞)

for any function f . The bound is similar to results from [16, 17].

Proposition 4. Suppose there exists α, β, γ > 0, a bounded set B ⊂ X and a Lyapunov

function U : X → R+ where f : X → R is such that for x ∈ X \B,

Ex[U(X1)− U(X0)] ≤ −γf(x),(40)
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and for x ∈ B,

f(x) ≤ α,(41)

Ex[U(X1)− U(X0)] ≤ β.(42)

Then

E[f(X∞)] ≤ α+
β

γ
.

Proof. For every z > 0 let Uz : X → R+ and fz : X → R+ be given by

Uz(x)
∆
= min{U(x), z}, fz(x)

∆
= f(x)I{U(x)<z}.

Trivially for all sufficiently large z, we have fz(x) = f(x) and Uz(x) = U(x) for all x ∈ B, so (41)

and (42) are satisfied by fz and Uz for all large z. We claim that (40) is satisfied as well. Suppose

that x is such that U(x) ≥ z. Then

Ex[Uz(X1)− Uz(X0)] = Ex[Uz(X1)]− z ≤ 0 = fz(x) = −γfz(x).

Alternatively, when x is such that U(x) < z, using that Uz(x) ≤ U(x) for all x,

Ex[Uz(X1)− Uz(X0)] = Ex[Uz(X1)− U(X0)] ≤ Ex[U(X1)− U(X0)] ≤ −γf(x) = −γfz(x).

Thus for all z and all x ∈ X \ B, Ex[Uz(X1) − Uz(X0)] ≤ −γfz(x) in analogy with (40). As for

all z, Uz is bounded by construction, E[Uz(X∞)] is finite. By stationarity and the finiteness of

E[Uz(X∞)],

0 = E [EX∞ [Uz(X1)− Uz(X0)]]

=
∑
x∈B

P(X∞ = x)Ex[Uz(X1)− Uz(X0)] +
∑
x 6∈B

P(X∞ = x)Ex[Uz(X1)− Uz(X0)]

≤ βP(X∞ ∈ B)− γ
∑
x 6∈B

P(X∞ = x)fz(x)

≤ β − γE[fz(X∞)I{X∞ 6∈B}],

or rearranging terms,

E[fz(X∞)I{X∞ 6∈B}] ≤
β

γ
.
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Thus

E[fz(X∞)] = E[fz(X∞)I{X∞∈B}] + E[fz(X∞)I{X∞ 6∈B}]

≤ αP(X∞ ∈ B) +
β

γ

≤ α+
β

γ
.

Now by Fatou’s lemma, as fz(X∞)→ f(X∞) almost surely as z →∞,

E[f(X∞)] = E
[

lim
z→∞

fz(X∞)
]
≤ lim inf

z→∞
E[fz(X∞)] ≤ α+

β

γ
,

giving the result.

We need a property of sample paths of the M(t)/M/m queue. For every initial queue length

q ∈ Z+, we create a separate queue length process with the same arrival and service rates on a

common probability space Ω. Let f : Z+ × R+ × Ω → Z+ map an initial queue length q, a time t,

and a realization ω ∈ Ω to the number of patients in the M(t)/M/m system length at time t. The

queues are coupled such that they share a single common Poisson process determining arrival times,

and a single independent common Poisson process determining potential departure times (which

only result in departures when there are patients in care). The relationship between the arrival

process, the potential departure process, and the actual departures is the same as the relationship

between A(0, t), D̃on(0, t) and Don(0, t) from Appendix A.1.

Lemma 3. For every realization ω ∈ Ω, every time t ∈ R+, and all initial queue lengths q, r ∈ Z+

such that q ≥ r, f(·, t, ω) satisfies

0 ≤ f(q, t, ω)− f(r, t, ω) ≤ q − r.

Namely, f(·, t, ω) is monotone increasing and 1-Lipschitz continuous with respect to the `1 norm in

the initial queue length.

Proof. Fix ω, and consider q, r ∈ Z+, q > r. Let τ0 = 0 and for i = 1, 2, . . . , let τi be the time

of the ith event from our processes driving arrivals and departures. It suffices to prove that

0 ≤ |f(q, τi, ω)− f(r, τi, ω)| ≤ q − r,(43)
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for all τi, as the queue length can only change at the times of these events. Trivially the claim holds

at τ0. Suppose the claim holds until τi. At time τi+1:

1. Suppose the event was an arrival. Then f(q, τi+1, ω) = 1 + f(q, τi, ω) and f(r, τi+1, ω) =

1 + f(r, τi, ω), so

f(q, τi+1, ω)− f(r, τi+1, ω) = f(q, τi, ω)− f(r, τi, ω),

thus (43) holds.

2. Suppose the event was a potential departure. By our inductive hypothesis, we must be in one

of the two cases below:

(a) f(q, τi, ω) = f(r, τi, ω). Then by our coupling, the system under initial condition q and

under initial condition r must both either have an actual departure or have no departure

at τi+1. As the change in queue lengths will be the same, by the same reasoning as when

we have an arrival, we continue to satisfy (43).

(b) f(q, τi, ω) > f(r, τi, ω). Now either both systems have a departure, or only the system

with initial queue length q has a departure (as it has more active servers), which with

the inductive hypothesis implies

f(q, τi+1, ω)− f(r, τi+1, ω) ≤ f(q, τi, ω)− f(r, τi, ω) ≤ q − r.

When both systems experience an actual departure, f(q, τi+1, ω)−f(r, τi+1, ω) = f(q, τi, ω)−

f(r, τi, ω) ≥ 0 where the inequality is by the inductive hypothesis. When only the system

under initial condition q has a departure, we still have

f(q, τi+1, ω)− f(r, τi+1, ω) = f(q, τi, ω)− 1− f(r, τi, ω) ≥ 0,

where the inequality holds by initial assumption for this case. Thus (43) holds.

Next we establish a few properties of Γ, defined in (3).
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Lemma 4. For all κ ≥ 0 and all (q, r), (q′, r′) ∈ R2
+, the operator Γ(·;κ) satisfies

nΓ

(
(q, r)

n
;κ

)
= Γ(q, r;nκ),(44)

‖Γ(q, r;κ)− Γ(q′, r′;κ)‖1 ≤ ‖(q, r)− (q′, r′)‖1.(45)

Namely, with respect to the `1 norm, Γ(·;κ) is 1-Lipschitz continuous. Further, each component of

Γ(q, r;κ) increases monotonically in both q and r.

Proof. The first property, follows immediately by definition of Γ, as

nΓ

(
(q, r)

n
;κ

)
= n

(
q

n
∧ κ,

( q
n
− κ
)+
− r

n

)
=
(
q ∧ nκ, (q − nκ)+ − r

)
= Γ(q, r;nκ).

To show the second part, we find that

‖Γ(q, r;κ)− Γ(q′, r′;κ)‖1 = |(q − κ)+ + r − (q′ − κ)+ − r′|+ |(q ∧ κ)− (q′ ∧ κ)|

≤ |(q − κ)+ − (q′ − κ)+|+ |r − r′|+ |(q ∧ κ)− (q′ ∧ κ)|.

Without loss of generality, suppose q ≥ q′. Now by considering the exhaustive cases q′ ≥ κ,

q > κ > q′, and κ ≥ q, the Lipschitz continuity follows trivially. The monotonicity property is

an immediate consequence of (3).

Corollary 2. For θ ∈ {LS,DA}, fix any s, s̄ ∈ Sθ. Assume that the processes Sθ(t) has

Sθ(0) = s and let S̃θ(t) be a version of Sθ(t) with instead S̃θ(0) = s̃. There is a coupling between

these processes such that for all t ≥ 0,

‖Sθ(t)− S̃θ(t)‖1 ≤ ‖s− s̃‖1.

Moreover, s ≥ s̃ componentwise implies Sθ(t) ≥ S̃θ(t) componentwise for all t.

Proof. It suffices to show the claim for all t ∈ (0, 1], as then the result follows by induction.

For θ = LS, for all t ∈ (0, 1), QLS(t) and Q̃LS(t) are M(t)/M/c queues with the same arrival and

service rates. Thus by Lemma 3, we obtain that QLS(t) is monotone increasing and 1-Lipschitz in

q. Likewise, RLS(t) and R̃LS(t) are M(t)/M/c queues with arrival rate zero and the same service

rate, so again by Lemma 3, we obtain that RLS(t) is monotone increasing and 1-Lipschitz in r. As
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QLS(t) does not depend on r and RLS(t) does not depend on q, the claim holds for t ∈ (0, 1). For

t = 1, ∥∥∥SLS(1)− S̃LS(1)
∥∥∥

1
=
∥∥∥Γ(SLS(1−); c)− Γ(S̃LS(1−); c)

∥∥∥
1

≤
∥∥∥SLS(1−)− S̃LS(1−)

∥∥∥
1

(46)

≤ ‖s− s̃‖1 ,(47)

where (46) follows from Lemma 4 and (47) follows from our analysis of the case t ∈ (0, 1). Mono-

tonicity follows as each component of Sθ(1) is the composition of monotone increasing functions and

thus monotone increasing in every input, again by Lemma 4 and our analysis of the case t ∈ (0, 1).

For θ = DA, the proof is very similar.

We also need a simple uniform bound on a sequence of Poisson random variables.

Lemma 5. If Xn
d
= Pois(γn), then for all k > 2γ(e− 1) and all n = 1, 2, . . . ,

P(Xn ≥ kn) ≤ e−kn/2.

Proof. We have

P(Xn ≥ kn) ≤ exp(−kn)E[exp(Xn)] = exp(−kn) exp(γn(e− 1)) ≤ exp(−kn/2).

We now analyze our system in the fluid scaling. As before let An
∆
= An(0, 1),Don,n

LS
∆
= Don,n

LS (0, 1−),

Don,n
DA

∆
= Don,n

DA (0, ½−), Doff,n
LS

∆
= Doff,n

LS (0, 1−), and Doff,n
DA

∆
= Don,n

DA (½, 1−). Using Lemma 5, we show

that when ρθ < 1, the convergence as q goes to infinity in Lemma 1 is uniform in n.

Lemma 6. We have

lim
k→∞

sup
n>0

E(nk,nc)

[
V (SnLS(1))− V (SnLS(0))

n

]
= −γLS.

Proof. From (31), we have that for all k and n,

E(nk,nc)

[
V (SnLS(1))− V (SnLS(0))

n

]
= E(nk,nc)

[
An −Don,n

LS −Doff,n

n

]
= λ− c(1− e−µ)− E(nk,nc)

[
Don,n

LS

n

]
.
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where the second equality follows as An
d
= Pois(nλ) and Doff,n

LS
d
= Bin(nc, 1 − e−µ) (see discussion

(33)). As in (32) we have D̃on,n
LS

d
= Pois(ncµ) coupled with Don,n

LS such that D̃on,n
LS ≥ Don,n

LS . Thus

E[Don,n
LS ] ≤ ncµ for all n and all k, so it suffices to show that

lim inf
k→∞

sup
n>0

E(nk,nc)

[
Don,n

LS

n

]
≥ cµ.

As in (34), we find that

lim inf
k→∞

sup
n>0

1

n
E(nk,nc)[D

on,n
LS ] ≥ lim

k→∞
sup
n>0

1

n
E[D̃on,n

LS I{D̃on,n
LS ≤(k−c)n}].

Now

lim
k→∞

sup
n>0

∣∣∣∣ 1nE[D̃on,n
LS I{D̃on,n

LS ≤(k−c)n}]− cµ
∣∣∣∣ = lim

k→∞
sup
n>0

∣∣∣∣ 1nE[D̃on,n
LS I{D̃on,n

LS ≤(k−c)n} − D̃
on,n
LS ]

∣∣∣∣
= lim

k→∞
sup
n>0

1

n
E[D̃on,n

LS I{D̃on,n
LS ≥(k−c)n}]

≤ lim
k→∞

sup
n>0

1

n

√
E[(D̃on,n

LS )2]E[I{D̃on,n
LS ≥(k−c)n}]

≤ lim
k→∞

sup
n>0

1

n

√
((ncµ)2 + ncµ) exp(−kn/2) exp(cn)(48)

= lim
k→∞

√
((cµ)2 + cµ) exp(−k/2) exp(c)(49)

= 0.

Here (48) follows from Lemma 5, and (49) follows as when k, is large, the supremum is attained by

taking n = 1.

Lemma 7. We have

lim
k→∞

sup
n>0

E(nk,0)

[
V (SnDA(1))− V (SnDA(0))

n

]
= −γDA.

The proof is very similar to previous lemma and omitted. We can give the uniform moment

bounds for Snθ (∞).

Lemma 8. For each policy θ ∈ {LS,DA}, when ρθ < 1, there exists a constant Mθ depending

on λ, c and µ such that for every n > 0, E [V (Snθ (∞))] ≤Mθn.
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Proof. As ρθ < 1, we have γθ > 0. By Lemma 6, there exists k̄LS such that for all k > k̄LS and

all n,

1

n
E(nk,nc)[V (SnLS(1))− V (SnLS(0))] ≤ −γLS

2
.

For any q̄ > q,

0 ≤ E(q̄,r)[V (SnLS(1))]− E(q,r)[V (SnLS(1))] ≤ q̄ − q,

by the monotonicity and 1-Lipschitz of Corollary 2. Thus

E(q̄,r)[V (SnLS(1))− V (SnLS(0))]− E(q,r)[V (SnLS(1))− V (SnLS(0))]

= E(q̄,r)[V (SnLS(1))]− E(q,r)[V (SnLS(1))] + q − q̄

≤ 0.

As a result, we obtain that for every n, for all q > k̄LSn,

1

n
E(q,nc)[V (SnLS(1))− V (SnLS(0))] ≤ −γLS

2
.(50)

We define k̄DA analogously using Lemma 7 and γDA. Let

bθ
∆
= max

{
k̄θ,

1

γθ

(
λ2 + λ+ Cθ(c

2 + c)
)}

,

where Cθ is as defined by (29) for LS and (36) for DA. Thus by Lemma 1 and Lemma 2, for all

s ∈ Snθ ,

Es[(V (Snθ (1))− V (Snθ (0)))2] ≤ (λn)2 + λn + Cθ((c
n)2 + cn)

= n2λ2 + nλ+ Cθ(n
2c2 + nc)

≤ bθγθn2.(51)

We let

Bn
θ

∆
= {(q, r) ∈ SLS | q + r ≤ 2nbθ},(52)

U(q, r)
∆
= (q + r)2,

αnθ
∆
= 2nbθ,

βnθ
∆
= n2bθ(4λ+ γθ),

γnθ
∆
= nγθ/2.
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and apply Proposition 4 for each n, using U as our Lyapunov function and f(q, r) = q + r. We

observe that (41) holds trivially. For (q, r) ∈ Snθ we have

E(q,r)[U(Snθ (1))− U(Snθ (0))] = E(q,r)[(q + r +An −Don,n
θ −Doff,n

θ )2]− (q + r)2

= 2(q + r)E(q,r)[A
n −Don,n

θ −Doff,n
θ ]

+ E(q,r)

[
(An −Don,n

θ −Doff,n
θ )2

]
= 2(q + r)E(q,r)[V (Snθ (1))− V (Snθ (0))]

+ E(q,r)[(V (Snθ (1))− V (Snθ (0)))2]

≤ 2(q + r)E(q,r)[V (Snθ (1))− V (Snθ (0))] + n2γθbθ,(53)

where (53) is a consequence of (51). Now, for (q, r) ∈ Bn
θ , using (52) with (53), we see that

2(q + r)E(q,r)[V (Snθ (1))− V (Snθ (0))] + n2γθbθ ≤ 4nbθE(q,r)[A
n(0, 1−)] + n2γθbθ

≤ n2bθ(4λ+ γθ)

= βnθ ,

showing that (42) holds. Finally, for s ∈ Snθ \Bn
θ ,

E(q,r)[U(Snθ (1))− U(Snθ (0))] ≤ 2(q + r)E(q,r)[V (Snθ (1))− V (Snθ (0))] + n2γθbθ(54)

≤ −γθn(q + r) + n2γθbθ(55)

≤ −γθ
2
n(q + r)− γθ

2
n(2nbθ) + n2γθbθ(56)

= −γθn
2
f(q, r),

where (54) follows from (53), (55) follows as s ∈ Snθ \Bn
θ so we can apply (50), and (56) follows as

s ∈ Snθ \Bn
θ ensures q + r > 2nbθ. This shows that (40) is satisfied for each n. Thus for every n we

can apply Proposition 4 to obtain that

E[f(Sn(∞))] ≤ αn +
βn

γn
= n (2bθ (4λ/γθ + 1)) ,

showing the result.

A.3. Fluid model approximations. Proof of Theorem 2. In this section, we establish

Theorem 2. First, we introduce the following additional notation to be used throughout the section.
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Let uiθ be the time of the ith shift change under policy θ, i.e. for i = 0, 1, 2, . . . , uiLS
∆
= i and

uiDA
∆
= i/2. Let ciθ be the number of residents on shift during [ui, ui+1), i.e. ciLS

∆
= c for i = 0, 1, 2, . . . ,

ciDA
∆
= 2c for even i, and ciDA

∆
= 0 for odd i.

To prove the result, we will invoke a theorem from [30] that shows the convergence of multidimen-

sional Markovian queueing processes to its fluid limit under the so called “uniform acceleration.”

Consider a Markov process X(t) on state space Zm+ with transition rates that depend both on the

current state and the time. The process X(t) is driven by a finite set of independent rate one exoge-

nous Poison process Ei(t), i = 1, . . . , k. The events from these processes trigger a “jump” vi ∈ Zm

in X(t). For each process i, there is a rate function αi(x, t) : Rm+ ×R+ → R+ that depends both on

the state x and the time t. Assume that for each i and t̄ ∈ R+, αi(·, t̄) is γi-Lipschitz in x where γi

does not depend on t̄. We define X(t) by

X(t)
∆
= X(0) +

k∑
i=1

viEi

(∫ t

0
αi(X(τ), τ)dτ

)
,

In Theorem 9.2 from [30], it is shown that this procedure uniquely defines the process X(t). Next,

we consider a deterministic process x(t) on Rm+ defined by

x(t)
∆
= x(0) +

k∑
i=1

vi

∫ t

0
αi(x(τ), τ)dτ.

Again the existence and uniqueness of such an x(t) is shown in Theorem 11.4 from [30]. To approx-

imate X(t) by x(t), we consider a sequence of processes Xn(t), n = 1, 2, . . . , defined by

Xn(t)
∆
= Xn(0) +

k∑
i=1

viEi

(
n

∫ t

0
αi

(
Xn(τ)

n
, τ

)
dτ

)
,

i.e. X1(t) is the original process. A special case of their result is as follows.

Proposition 5 ([30], Theorem 2.2). If Xn(0)/n→ x(0) a.s., then

lim
n→∞

Xn(t)

n
= x(t),

a.s. and u.o.c.

We now return to our model. On the intervals [uiθ, u
i+1
θ ) between shift changes, our processes Sθ(t)

and sθ(t) are of the form of X(t) and x(t) from the theorem. Specifically, we can take v1 = (1, 0)
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and α1((q, r), t) = λ(uiθ + t) so that the arrival process A(uiθ, u
i
θ + t) = E1(t) for t ∈ [uiθ, u

i+1
θ ].

Similarly, we take v2 = (−1, 0) and

α2((q, r), t)
∆
= (ciθ ∧ q)µ =


(c ∧ q)µ θ = LS,

(2c ∧ q)µ θ = DA, i even,

0 θ = DA, i odd,

then Don(uiθ, t) = E2(t) for t ∈ [uiθ, u
i+1
θ ]. Finally, we take v3 = (0,−1) and α3((q, r), t)

∆
= rµ so

that Doff(uiθ, t) = E3(t) for t ∈ [uiθ, u
i+1
θ ]. We satisfy the Lipschitz condition on αi(·, t) as α1 does

not depend on the state and both α2 and α3 are µ-Lipschitz in (q, r) independent of t.

Thus the proposition immediately yields that if Snθ (uiθ)/n → sθ(u
i
θ) a.s., then Snθ (t)/n → sθ(t)

u.o.c. From this point, the primary difficulty in proving Theorem 2 is showing that Sθ(t) jumping at

each shift change does not ruin the convergence. We can now prove the main result of the section.

Proof of Theorem 2.. For each policy θ ∈ {LS,DA}, we will show by induction on i that

Snθ (t)/n → sθ(t) a.s. and uniformly on [0, uiθ]. The case of i = 0 holds by the assumption of the

theorem.

Suppose the claim holds for i. We notice that

sup
0≤τ≤ui+1

θ

∥∥∥∥Snθ (τ)

n
− sθ(τ)

∥∥∥∥
1

=

max

{
sup

0≤τ≤uiθ

∥∥∥∥Snθ (τ)

n
− sθ(τ)

∥∥∥∥
1

, sup
uiθ≤τ<u

i+1
θ

∥∥∥∥Snθ (τ)

n
− sθ(τ)

∥∥∥∥
1

,

∥∥∥∥∥Snθ (ui+1
θ )

n
− sθ(u

i+1
θ )

∥∥∥∥∥
1

}
.

By the definitions of uiθ and ciθ, it follows immediately that when applying Γ for the shift change

at time ui+1, we use Γ(·; ciθ). Recalling that Snθ and sθ are a.s. RCLL, and applying (44) and then

(45) from Lemma 4,∥∥∥∥∥Snθ (ui+1
θ )

n
− sθ(u

i+1
θ )

∥∥∥∥∥
1

=

∥∥∥∥∥Γ(Snθ ((ui+1
θ )−);nciθ)

n
− Γ(sθ((u

i+1
θ )−); ciθ)

∥∥∥∥∥
1

=

∥∥∥∥∥Γ

(
Snθ ((ui+1

θ )−)

n
; ciθ

)
− Γ

(
sθ((u

i+1
θ )−); ciθ

)∥∥∥∥∥
1

≤

∥∥∥∥∥Snθ ((ui+1
θ )−)

n
− sθ((u

i+1
θ )−)

∥∥∥∥∥
1

.
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For τ ∈ [uiθ, u
i+1
θ ], we let S̄nθ (t) and s̄θ(t) be the continuous extension of Snθ (t) and sθ(t), respectively,

from [uiθ, u
i+1
θ ) to [uiθ, u

i+1
θ ], i.e.,

S̄nθ (τ)
∆
=


Snθ (τ) τ < ui+1

θ ,

Snθ ((ui+1
θ )−) τ = ui+1

θ ,

s̄θ(τ)
∆
=


sθ(τ) τ < ui+1

θ ,

sθ((u
i+1
θ )−) τ = ui+1

θ .

Thus we obtain that

sup
0≤τ≤ui+1

θ

∥∥∥∥Snθ (τ)

n
− sθ(τ)

∥∥∥∥
1

= max

{
sup

0≤τ≤uiθ

∥∥∥∥Snθ (τ)

n
− sθ(τ)

∥∥∥∥
1

, sup
uiθ≤τ≤u

i+1
θ

∥∥∥∥ S̄nθ (τ)

n
− s̄θ(τ)

∥∥∥∥
1

}
.

By induction, the first term in the above maximum goes to zero a.s. and in particular Snθ (uiθ)/n→

sθ(u
i
θ) a.s. By Proposition 5, the second term converges to zero a.s. as well, as previously discussed.

Remark 2. The result from [30] is actually stronger than what we suggested. It implies that

a.s. and u.o.c., as n → ∞, ‖Snθ (t)/n − sθ(t)‖1 ≤ O(log n). This can be generalized to our case

inductively in the same manner, but we do not pursue this further.

A.4. Long run behavior of the fluid model. In this section, for each policy θ ∈ {LS,DA},

we show that the fluid limit at integer times {sθ(k)}, which is a deterministic discrete time dynamical

system, has a simple long run behavior. To show this, we need to recall definitions from Section 2.

For a set X ⊂ Rn, X 6= ∅, a function f : X → X , and an initial condition x0 ∈ X , let xk, k ∈ Z+

be defined by f(xk) = xk+1. Recall from Section 2 that a point x∗ ∈ X is attractive if for every

x0 ∈ X , limk→∞ xk = x∗. As previously mentioned, such an x∗ must be unique. Further, when f is

continuous on X , it immediately follows that f(x∗) = x∗, i.e. x∗ is a fixed point of f . First, we give

a known (e.g. [6] page 183) criterion for identifying attractive points.

Proposition 6. Suppose X is nonempty and compact, f : X → X is continuous on X , and for

every x,y ∈ X ,

‖f(x)− f(y)‖p < ‖x− y‖p,

for some p ≥ 1. Then there exists a unique attractive point x∗ ∈ X .
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We now give a sufficient condition to ensure that in finite time {xk} will reach a bounded set,

such as the compact set in the previous theorem.

Proposition 7. If there is a function V : X → R+, γ > 0 and B ⊂ X such that for all

x ∈ X \B,

V (f(x))− V (x) ≤ −γ,

then for all x0 ∈ X \B, there exists m ≤ dV (x0)/γe such that xm ∈ B.

Proof. Let n = dV (x0)/γe + 1 and assume for contradiction that x0, . . . ,xn are all not in B.

Then

V (xn) = V (x0) +
n∑
k=1

V (xk)− V (xk−1) ≤ V (x0)− nγ < 0,

contradicting the non-negativity of V .

Finally, we give a criteria for instability.

Proposition 8. Suppose V : X → R+ is a continuous function such that sup{V (x) | x ∈ X} =

∞, and for all x ∈ X ,

V (f(x))− V (x) ≥ 0.

Then an attractive point does not exist.

Proof. Assume for contradiction there were an attractive point x∗. Let x0 ∈ X be such that

V (x0) > V (x∗). Such a point exists as have assumed that the supremum of V is infinite. However,

as x∗ is attractive and V is continuous,

V (x∗) = lim
n→∞

V (xn) = V (x0) + lim
n→∞

n∑
k=1

V (xk)− V (xk−1) ≥ V (x0),

contradicting V (x0) > V (x∗).

We now consider the differential equation that controls the evolution of the state for the fluid

model.
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Lemma 9. Given parameters (γ,m, µ, x(0)) ∈ R4
+, the differential equation

ẋ(t) = γ − (x(t) ∧m)µ,(57)

has a unique solution. The solution x(t) is monotone in t and satisfies x(t) ≥ 0 for all t ≥ 0.

Further, if g : R+ → R+ is defined by g(x(0)) = x(½), then g is strictly increasing and 1-Lipschitz.

Finally, if we let

x̃
∆
=


m γ ≥ mµ,

m− (γ −mµ)/2 γ < mµ,

then x(0) ≥ x̃ implies that:

(a) x(t) ≥ m for t ∈ [0, ½),

(b) x(½) = x(0) + (γ −mµ)/2,

(c) For all y > x(0), g(y)− g(x(0)) = y − x(0).

On the other hand, if x(0) < x̃, then each of (a), (b) and (c) above are violated. In particular,

(a’) There exists s ∈ [0, ½) such that x(s) < m,

(b’) x(½) > x(0) + (γ −mµ)/2,

(c’) For all y > x(0), g(y)− g(x(0)) < y − x(0).

The proof is rather lengthy but no difficult, so it is deferred to Appendix A.7. We now use this to

analyze the fluid limits of LS and DA. Let g1
LS(q) and g2

LS(q) be the function g from Lemma 9 when

the parameters (λ1, c, µ, q) and (λ2, c, µ, q) are used, respectively. Let fLS : TLS → TLS be given by

fLS(q, r)
∆
= Γ(g2

LS(g1
LS(q)), re−µ; c).(58)

Similarly, let gDA(q) be the function from Lemma 9 using parameters (λ1, 2c, µ, q), and let

h1
DA(q, r)

∆
= Γ(gDA(q), 0; 2c),(59)

h2
DA(q, r)

∆
= Γ

(
q +

λ2

2
, re−µ/2; 0

)
,(60)

fDA(s)
∆
= h2(h1(s)).(61)

We now prove Proposition 1.
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Proof of Proposition 1.. To prove existence and uniqueness of sθ(t), it suffices to show that

for every k ∈ Z+, sθ(t) exists and is uniquely defined for all 0 ≤ t ≤ k. For k = 0, we are given

sθ(0) in the statement of the proposition. Suppose the claim holds for k. We now consider cases on

θ.

LS – By induction sLS(k) is uniquely defined. As qLS(t) solves the differential equation on [k, k+ ½)

as used to define g1
LS(q) with initial condition qLS(k), and likewise solves the differential

equation on [k + ½, 1) used to define g2
LS(q) with initial condition qLS(k + ½), we obtain by

Lemma 9 that qLS(t) is uniquely determined on [k, k + 1). As ṙLS(t) = −µrLS(t) and by

induction rLS(k) is uniquely defined, we obtain that for t ∈ [k, k + 1), r(t) = r(k)e−µ(t−k),

uniquely defining sLS(t) on that interval as well. Thus we immediately obtain that for every

sLS(k) ∈ TLS,

sLS(k + 1) = fLS(sLS(k)),

showing the hypothesis.

DA – The argument is similar. Briefly, for all sDA(k) ∈ TDA,

sDA(k + ½) = h1(sDA(k)),

sDA(k + 1) = h2(sDA(k + ½)),

sDA(k + 1) = fDA(sDA(k)),

and at intermediate times in t ∈ (k, k+ ½) and t ∈ (k+ ½, k+ 1), sDA(t) is the unique solution

to a linear ODE either with constant coefficients or of the type from Lemma 9.

Finally, we must show that sθ(k) ∈ Tθ, k ≥ 1. For LS, we must show that rLS(k) < c implies

qLS(k) ≤ c. By definition

sLS(k) = Γ(sLS(k−); c) =


(qLS(k−)− c+ rLS(k−), c) qLS(k−) ≥ c,

(rLS(k−), qLS(k−)) qLS(k−) < c.

Suppose rLS(k) < c. Note that rLS(k) < c only in the second case. As qLS(k) = rLS(k−) ≤

rLS(k − 1) ≤ c, we obtain that qLS(k) ≤ c, showing the claim. For DA, must simply show that

rDA(k) = 0, which holds as

rDA(k) = Γ(sDA(k−); 0) = (q(k−) + r(k−), 0).
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Next we give some simple structural properties of the functions giLS and fθ that will be needed

in the analysis of the long run behavior of the fluid limits.

Lemma 10. There exists a unique q̃LS such that when qLS(0) ≥ q̃LS,

(a) qLS(t) ≥ c for t ∈ [0, 1),

(b) qLS(1−) = qLS(0) + λ− cµ,

(c) For q̄ > qLS(0), g2
LS(g1

LS(q̄))− g2
LS(g1

LS(qLS(0))) = q̄ − qLS(0).

and when qLS(0) < q̃LS, (a), (b) and (c) are violated. In particular,

(a’) There exists s ∈ [0, 1) such that qLS(s) < c,

(b’) qLS(1−) > qLS(0) + λ− cµ,

(c’) For q̄ > qLS(0), g2
LS(g1

LS(q̄))− g2
LS(g1

LS(qLS(0))) < q̄ − qLS(0).

Proof. For i = 1, 2, let q̃iLS be x̃ from Lemma 9 when used to create giLS. It is easy to see

that properties (a), (b) and (c) will hold when for all i = 1, 2, properties (a), (b) and (c) from the

application Lemma 9 to create giLS hold, i.e. we have both qLS(0) ≥ q̃1
LS and qLS(½) ≥ q̃2

LS.

Similarly, it is easy to see that properties (a’), (b’) and (c’) will hold if there exists i ∈ {1, 2}

such that that properties (a’), (b’) and (c’) from the application of Lemma 9 to create giLS hold,

i.e. if either qLS(0) < q̃1
LS or qLS(½) < q̃2

LS.

As qLS(½) = g1
LS(qLS(0)) and by Lemma 4 g1

LS is strictly increasing, there is a threshold q∗ such

that qLS(½) ≥ q̃2
LS iff qLS(0) ≥ q∗. Thus by taking q̃LS = max{q∗, q1

LS}, we will have both qLS(0) ≥ q̃1
LS

and qLS(½) ≥ q̃2
LS iff qLS(0) ≥ q̃LS. This gives the result.

Lemma 11. For θ ∈ {LS,DA}, fθ is 1-Lipschitz with respect to the `1 norm and both outputs

of the function fθ are monotonically increasing in both inputs.

Proof. For LS, the functions g1
LS and g2

LS are monotonically increasing and 1-Lipschitz by

Lemma 9. Similarly re−µ as a function of r is increasing and 1-Lipschitz, and by Lemma 4, Γ(·; c)

is 1-Lipschitz and each component is monotonically increasing in every input. Thus fLS(q, r) is
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a composition of monotone increasing 1-Lipschitz functions and thus monotone increasing and

1-Lipschitz.

The argument is similar for DA. The functions gDA, q + λ2/2 as a function of q, re−µ/2 as a

function of r, Γ(·; 2c) and Γ(·; 0) are all 1-Lipschitz and monotonically increasing in every input (by

Lemma 9 for gDA and by Lemma 4 for Γ(·, 2c) and Γ(·, 0)). Therefore fDA(q, r) is a composition of

1-Lipschitz monotone increasing functions and thus 1-Lipschitz and monotone increasing.

We can now analyze the long run behavior of the fluid limits. First we will show that when

ρθ < 1, fθ restricted to some Tθ ⊂ Tθ has an attractive fixed point using contractive mapping

(Proposition 6). Then we will use a Lyapunov function argument to show that the attractive point

over Tθ is in fact attractive over all of Tθ (Proposition 7). Finally, we will use another Lyapunov

function argument to show that fθ has no attractive points when ρθ ≥ 1 (Proposition 8).

Proposition 9. The process {sθ(k)} has a unique attractive fixed point iff ρθ < 1.

Proof. Assume ρLS < 1. Recall q̃LS from Lemma 10, and let q̃DA be x̃ from Lemma 9 as applied

to create gDA. Let

Tθ
∆
= Tθ \ {(q, r) | q > q̃θ}.(62)

We now check the assumptions of Proposition 6 are satisfied by fθ restricted to Tθ. We can imme-

diately verify by definition that fθ is the composition of continuous functions and thus continuous

(recall that g1
LS, g2

LS, and gDA are continuous by Lemma 9 and Γ(·, κ) is continuous for all κ by

Lemma 4). Noting that q̃LS ≥ c by part (a) of Lemma 10, we see that TLS = [0, c]× [0, c] ∪ {(q, c) |

0 ≤ q ≤ q̃LS} and thus it is a nonempty compact set. Likewise TDA = {(q, 0) | 0 ≤ q ≤ q̃DA} where

by Lemma 9 we see that q̃DA ≥ 2c, thus TDA is a nonempty compact set as well. We still need to

check that fθ : Tθ → Tθ and that fθ is contractive on Tθ.

To show fLS : TLS → TLS, we have that for any (q, r) ∈ TLS,

fLS(q, r) ≤ fLS(q̃LS, c)(63)

= Γ
(
q̃LS + λ− cµ, ce−µ; c

)
(64)

=
(
q̃LS + λ− cµ− c+ ce−µ, c

)
(65)

≤ (q̃LS, c),(66)
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where the inequalities are componentwise. Here (63) holds by Lemma 11. We obtain (64) by Lemma

10 part (b). Then (65) holds as we have q̃LS +λ−cµ = qLS(1−) ≥ c by part (a) of Lemma 10. Finally

(66) holds as ρLS < 1 implies λ− cµ− c+ ce−µ = −γLS < 0. Thus we obtain that fLS : TLS → TLS.

To show fDA : TDA → TDA, we first compute that

h1(q̃DA, 0) = Γ

(
q̃DA +

λ1

2
− cµ, 0; 2c

)
(67)

=

(
q̃DA +

λ1

2
− cµ− 2c, 2c

)
.(68)

Here (67) follows from part (b) of Lemma 9 on gDA, and (68) follows from part (a) of the lemma.

Thus for all (q, 0) ∈ TDA,

fDA(q, 0) ≤ fDA(q̃DA, 0)(69)

= h2

(
q̃ +

λ1

2
− cµ− 2c, 2c

)
= Γ

(
q̃ +

λ1

2
− cµ− 2c+

λ2

2
, 2ce−µ/2; 0

)
=
(
q̃ + λ− cµ− 2c+ 2ce−µ/2, 0

)
≤ (q̃DA, 0).(70)

where (69) holds by the monotonicity of fDA and (70) holds as ρDA < 1. Again the inequalities are

componentwise. Thus we obtain that fDA : TDA → TDA.

We show that fLS is contractive on TLS with respect to the ‖ · ‖1 norm. Consider (q, r), (q′, r′) ∈

TLS, such that (q, r) 6= (q′, r′). If q 6= q′, then by part (c’) of Lemma 10

|g2
LS(g1

LS(q))− g2
LS(g1

LS(q′))| < |q − q′|.(71)

Similarly, when r 6= r′, then

|re−µ − r′e−µ| < |r − r′|.(72)

Thus we obtain that

‖fLS(q, r)− fLS(q′, r′)‖1 = ‖Γ(g2
LS(g1

LS(q)), re−µ; c)− Γ(g2
LS(g1

LS(q′)), r′e−µ; c)‖1

≤ |g2
LS(g1

LS(q))− g2
LS(g1

LS(q′))|+ |re−µ − r′e−µ|(73)

< |q − q′|+ |r − r′|(74)

= ‖(q, r)− (q′, r′)‖1.
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Here (73) holds by Lemma 4 and (74) follows from (71) if q 6= q′ and from (72) if r 6= r′.

Showing that fDA is contractive on TDA with respect to the ‖ · ‖1 norm is very similar to the LS

case. Briefly, we observe that when q < q̃DA, that h1
DA is strictly contractive by (c’) of Lemma 9.

It is easy to see that h2
DA is non-expansive for all (q, r) ∈ R2

+. Thus fDA on TDA is the composition

of a contractive function and a non-expansive function and hence contractive.

Thus the assumptions of Proposition 6 are satisfied by fθ on Tθ when ρθ < 1. This implies that

once sθ(k) enters Tθ it will converge to a unique fixed point. For the case ρθ < 1, it remains to show

that for sθ(0) 6∈ Tθ, we reach Tθ in finite time.

To this end, we apply Proposition 7 using the Lyapunov function V (q, r)
∆
= q + r, the set of

exceptions as Tθ, and γ to be γθ (we have γθ > 0 as ρθ < 1). We now show that the drift condition

is satisfied. For LS, (q, r) 6∈ TLS implies q ≥ q̃LS ≥ c, thus we must have r = c. Thus,

V (fLS(q, c))− V (q, c) = V (Γ(g2
LS(g1

LS(q)), ce−µ; c))− (q + c)

= g2
LS(g1

LS(q)) + ce−µ − (q + c)(75)

= q + λ− cµ+ ce−µ − (q + c)(76)

= −γLS.

Here (75) follows from the same argument justifying (30), and (76) follows from part (b) of Lemma

10. For DA, (q, 0) 6∈ TDA implies q ≥ q̃DA. We obtain

h1(q, 0) =

(
q +

λ1

2
− cµ− 2c, 2c

)
,

just as we justified (67) and (68). Thus for such q,

V (fDA(q, 0))− V (q, 0) = V

(
h2

(
q +

λ1

2
− cµ− 2c, 2c

))
− q

= V (Γ(q + λ− cµ− 2c, 2ce−µ/2; 0))− q

= −γDA.

Thus the assumptions of Proposition 7 are satisfied, establishing the claim in the case when ρθ < 1.

Finally, we show that {sθ(k)} has no attractive point when ρθ ≥ 1 by applying Proposition 8.

We again take V (q, r) = q + r, and immediately verify that it is continuous and unbounded on Tθ.
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For LS, we compute that for any sLS(0),

V (sLS(1))− V (sLS(0)) = qLS(1−)− qLS(0) + rLS(1−)− rLS(0)(77)

=

∫ 1

0
λ(t)− µ(qLS(t) ∧ c)dt− rDA(0)(1− e−µ)(78)

≥ λ− cµ− c(1− e−µ)(79)

= −γLS

≥ 0,(80)

where (77) follows similarly to (30), (78) follows from the definition of q̇LS(t), (79) follows as

rLS(0) ≤ c and qLS(t)∧ c ≤ c, and finally (80) follows as ρLS ≤ 1. For DA, we compute that for any

sDA(0) that

V (sDA(1))− V (sDA(0)) = qDA(1−)− qDA(0) + rDA(1−)(81)

=
λ2

2
+ qDA(½)− qDA(0) + rDA(½)e−µ/2

=
λ2

2
+ qDA(½) + rDA(½)− qDA(0)− rDA(½)(1− e−µ/2)

≥ λ2

2
+ qDA(½) + rDA(½)− qDA(0)− 2c(1− e−µ/2)(82)

=
λ2

2
+ qDA

(
½−
)
− qDA(0)− 2c(1− e−µ/2)(83)

=
λ2

2
+

∫ ½

0
λ1 − µ(qDA(t) ∧ 2c)dt− 2c(1− e−µ/2)(84)

≥ λ−
∫ ½

0
2cµ dt− 2c(1− e−µ/2)

= −γDA

≥ 0,(85)

where (81) follows similarly to (30), (82) follows as rDA(½) ≤ 2c, (83) follows as by Γ, qDA(½−) +

rDA(½−1) = qDA(½), (84) follows from the definition of q̇DA(t), and finally (85) holds as ρDA ≥ 1.

Thus we see by Proposition 8 that ρθ ≥ 1 implies that {sθ(k)} has no attractive point, completing

the proof of Proposition 9.

Finally, we give a result providing a uniform bound on the distance moved towards the fixed

point in each iteration of the fluid model. This result will be useful in the proof of Theorem 3. Let

48



Vθ : Tθ → R+ be given by

Vθ(s)
∆
= ‖s− sθ(∞)‖1.(86)

Corollary 3. For each θ ∈ {LS,DA}, when ρθ < 1, for every z > 0, there exists γ > 0 such

that

inf
s∈Tθ\Bz(sθ(∞))

Vθ(fθ(s))− Vθ(s) ≤ −γ.

Proof. Recall from in the proof of Proposition 9 that for each θ, we defined sets Tθ such that

that fθ is contractive on Tθ and for all s ∈ Tθ \ Tθ,

V (fθ(s))− V (s) = −γθ < 0.

Suppose s = (q, r) 6∈ Tθ. Trivially s ≥ sθ(∞) componentwise as sθ(∞) ∈ Tθ. By Lemma 11, as

s ≥ sθ(∞) componentwise, we have fθ(s) ≥ fθ(sθ(∞)) = sθ(∞) componentwise as well. Thus for

s 6∈ Tθ, letting (q′, r′) = fθ(s),

Vθ(fθ(s))− Vθ(s) = ‖fθ(s)− sθ(∞)‖1 − ‖s− sθ(∞)‖1

= q′ − qθ(∞) + r′ − rθ(∞)− (q − qθ(∞) + r − rθ(∞))

= V (fθ(s))− V (s)

≤ −γθ.

For all s ∈ Tθ, s 6= sθ(∞), as fθ is contractive on Tθ, we have

Vθ(fθ(s)) = ‖fθ(s)− sθ(∞)‖1

= ‖fθ(s)− fθ(sθ(∞))‖1

< ‖s− sθ(∞)‖1

= Vθ(s).

Thus for s ∈ Tθ, Vθ(fθ(s))− Vθ(s) ≤ 0, holding with equality only when s = sθ(∞). Fix z from the

statement of the Lemma. As Vθ(fθ(s)) − Vθ(s) is a composition of continuous functions and thus

continuous and as Tθ is compact (as shown in the proof of Proposition 9), we have that given our

z there exists ε > 0 such that

inf
s∈Tθ\Bz(sθ(∞)

Vθ(fθ(s))− Vθ(s) ≤ −ε.
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Thus by taking γ = min{ε, γθ}, we obtain the result.

A.5. Interchange of Limits. Proof of Theorem 3. In this section, we prove Theorem 3,

showing that the rescaled steady state distributions Snθ (∞)/n converge in probability to the fixed

point sθ(∞) of the fluid limit at integer times.

Recall that a set of random vectors {Xn} is defined to be tight if for every ε there exists k such

that for every n, P(‖Xn‖1 > k) ≤ ε. As a direct consequence of Lemma 8 and Markov’s inequality,

we obtain:

Corollary 4. For each policy θ ∈ {LS,DA}, when ρθ < 1, the set of random vectors {Snθ (∞)/n}

is tight.

By Prokhorov’s theorem, this implies that {Xn} is relatively compact. That is, for every subse-

quence Xni there exists a random vector X and a subsubsequence Xnij
such that Xnij

⇒ X (see

[5]). Thus for every subsequence ni there is a subsubsequence nij and a random vector S̄θ such that

as j →∞

S
nij
θ (∞)

nij
⇒ S̄θ.

Thus to show Theorem 3, it is sufficient to show that for every sequence ni, the resulting S̄θ equals

sθ(∞) with probability one, as convergence in distribution to a constant implies convergence in

probability.

Proof of Theorem 3.. First, we claim that for θ ∈ {LS,DA},

fθ(S̄θ)
d
= S̄θ,(87)

where fLS and fDA are defined by (58) and (61), respectively. By Proposition 11.3.2 from [11], we

can equivalently check that the Lévy-Prokhorov distance between these variables is zero, i.e. that

for all g : Tθ → R such that ‖g‖BL ≤ 1, we have

E[g(fθ(S̄θ))− g(S̄θ)] = 0.

Here, we use the three term estimate as devised by [13], Chapter 4, Theorem 9.10, in a similar

continuous time interchange of limits argument. See [36] for similar but less terse argument. Assume
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for every n that Snθ (0)
d
= Snθ (∞). Now for every n, we have

∣∣E[g(fθ(S̄θ))− g(S̄θ)]
∣∣ ≤ ∣∣∣∣E [g(fθ(S̄θ))− g

(
fθ

(
Snθ (0)

n

))]∣∣∣∣
+

∣∣∣∣E [g(fθ

(
Snθ (0)

n

))
− g

(
Snθ (1)

n

)]∣∣∣∣
+

∣∣∣∣E [g(Snθ (1)

n

)
− g

(
S̄θ
)]∣∣∣∣ .

As fθ and g are continuous and g is bounded, g ◦ fθ is a bounded continuous function. For the first

term, Snθ (0)/n
d
= Snθ (∞)/n⇒ S̄θ, so we can apply the Continuous Mapping Theorem and then the

Bounded Convergence Theorem to obtain that E[g (fθ (Snθ (0)/n))]→ E[g(fθ(S̄θ))] as n→∞ along

nij . By stationarity Snθ (1)/n
d
= Snθ (0)/n

d
= Snθ (∞)/n, implying that the third term converges to zero

along nij by a similar argument.

Finally we bound the second term. Let hnθ : Tθ → R and hθ : Tθ → R be given by

hnθ (s)
∆
= Ebnsc

[
g

(
Snθ (1)

n

)]
,

hθ(s)
∆
= g(fθ(s)),

so that ∣∣∣∣E [g(fθ

(
Snθ (0)

n

))
− g

(
Snθ (1)

n

)]∣∣∣∣ =

∣∣∣∣E [hθ (Snθ (0)

n

)
− hnθ

(
Snθ (0)

n

)]∣∣∣∣ .(88)

We need some properties of hnθ and h to make an estimate. First, we claim that for all s, hnθ (s)→

hθ(s) as n→∞. As a consequence of Theorem 2, we have that for every s ∈ Tθ, if Snθ (0) = bnsc so

that Snθ (0)/n→ s a.s., then Snθ (1)/n→ fθ(s) a.s. as well. By the continuity of g, it follows from that

g(Snθ (1)/n)→ g(fθ(s)) a.s. as well. Noting that g(Snθ (1)/n) is bounded, we can apply the Bounded

Convergence Theorem to obtain that for s ∈ Tθ,

lim
n→∞

hnθ (s) = hθ(s).(89)

We can now bound (88) with a coupling argument. By the Skorokhod Representation Theorem, let

Ω be a common probability space for {Snθ (0)} and S̄θ such that for ω ∈ Ω, Snθ (0, ω) → S̄θ(ω) a.s.
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Now we have ∣∣∣∣hθ (Snθ (0, ω)

n

)
− hnθ

(
Snθ (0, ω)

n

)∣∣∣∣ ≤ ∣∣∣∣hθ (Snθ (0, ω)

n

)
− hθ

(
S̄θ(ω)

)∣∣∣∣
+
∣∣hθ (S̄θ(ω)

)
− hnθ

(
S̄θ(ω)

)∣∣
+

∣∣∣∣hnθ (S̄θ(ω)
)
− hnθ

(
Snθ (0, ω)

n

)∣∣∣∣ .
We claim each of these terms converges to zero a.s. The first term converges to zero as hθ is a

continuous function and Snθ (0, ω)/n → S̄θ(ω) a.s. The second term converges to zero by (89). Let

S̃nθ (t) be another version of the process Snθ (t) with the initial condition S̃nθ (0) = bnS̄θc that is

coupled to Snθ (t) as in Corollary 2. Then∣∣∣∣hnθ (S̄θ(ω)
)
− hnθ

(
Snθ (0, ω)

n

)∣∣∣∣ =

∣∣∣∣∣E
[
g

(
S̃nθ (1)

n

)
− g

(
Snθ (1)

n

) ∣∣∣∣∣ S̃nθ (0) = bnS̄θ(ω)c, Snθ (0) = Snθ (0, ω)

]∣∣∣∣∣
≤ ‖g‖BL

n
E

[∥∥∥S̃nθ (1)− Snθ (1)
∥∥∥

1

∣∣∣∣∣ S̃nθ (0) = bnS̄θ(ω)c, Snθ (0) = Snθ (0, ω)

]

≤ ‖g‖BL

n

∥∥bnS̄θ(ω)c − Snθ (0, ω)
∥∥

1
(90)

≤ ‖g‖BL

(∥∥∥∥S̄θ(ω)−
Snθ (0, ω)

n

∥∥∥∥
1

+
1

n

)
,

showing that the third term converges to zero a.s. as well. Here (90) follows from Corollary 2.

Finally, as hnθ and hθ are bounded by one, the Bounded Convergence Theorem implies that the

right hand side of (88) converges to zero. Thus we have shown (87).

Now we show that S̄θ = sθ(∞) a.s. We assume the conclusion is false to show a contradiction.

By assumption, there exists some s̃θ 6= sθ(∞) and ε > 0 such that sθ(∞) 6∈ Bε(s̃θ) and

P(S̄θ ∈ Bε(s̃θ)) > 0.

Let N be such that

P(‖S̄θ‖1 > N) < P(S̄θ ∈ Bε(s̃θ)).(91)

Let z = ‖s̃ − sθ(∞)‖1 − ε and let Z = Bz(sθ(∞)) be the largest ball around sθ(∞) disjoint from

Bε(s̃θ). We now use Vθ from (86), and let

−d ∆
= inf

s6∈Z
Vθ(fθ(s))− Vθ(s).
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Note that d > 0 by Corollary 3. Let n ∈ Z+ be such that

nd > sup
‖s‖1<N

Vθ(s),

(the supremum is bounded as {s ∈ Tθ|‖s‖1 < N} is compact and Vθ is continuous). Let f
(m)
θ be the

function fθ composed with itself m times. We now claim that for all s ∈ Tθ,

f (n)(s) 6∈ Z implies that ‖s‖1 > N.(92)

We show the contrapositive using Proposition 7. We take our bounded set of exceptions as Z, use

the Lyapunov function Vθ, and drift −d. The drift condition is satisfied as d > 0. Thus ‖s‖1 < N

implies that there exists m with 0 ≤ m ≤ n such that f
(m)
θ (s) ∈ Z. Notice that Corollary 3 implies

that fθ(Z) ⊂ Z. Thus ‖s‖1 < N in fact implies that f
(n)
θ (s) ∈ Z, showing (92).

Thus we have the inequalities

P(‖S̄θ‖1 > N) < P(S̄θ ∈ Bε(s̃θ))(93)

= P(f
(n)
θ (S̄θ) ∈ Bε(s̃θ))(94)

≤ P(f
(n)
θ (S̄θ) 6∈ Z)(95)

≤ P(‖S̄θ‖1 > N),(96)

where (93) follows from (91), (94) follows from (87), (95) follows as Z and Bε(s̃θ) are disjoint, and

(96) follows from (92). Thus we have obtained a contradiction, which shows that S̄θ equals sθ(∞)

with probability one. This completes the proof.

A.6. Convergence of reassignments in the fluid limit. Before proving Corollary 1, we

need a simple monotonicity result for the fluid limit qθ(t).

Lemma 12. Under the assumptions of Corollary 1, for θ ∈ {LS,DA}, qθ(t) is monotone on

[0, ½) and [½, 1). Further, for any t∗ ∈ [0, 1] such that qLS(t∗) = c, (resp. t∗ ∈ [0, ½) such that

qDA(t∗) = 2c), qθ(t) is strictly monotone in a neighborhood of t∗. Consequently, there exists ε0 such

that for every ε < ε0 there exists δ such that |qθ(t)− qθ(t∗)| < δ implies |t− t∗| < ε.

Proof. The monotonicity on [0, ½) and [½, 1) follows as on each such interval, qθ(t) is the solution

to the differential equation of the type from Lemma 9. For LS, for any t∗ such that qLS(t∗) = c,
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we have q̇LS(t∗) = λ(t∗) − cµ. As we have assumed that λ1, λ2 6= cµ, we have that q̇LS(t∗) 6= 0.

Noting that qLS(t) is continuously differentiable, it follows that qLS(t) is strictly monotone. A similar

argument applies for DA.

Finally, we show the convergence of the number reassignments (the number of patients forced to

wait per day), completing the commutative diagram in Figure 3.

Proof of Corollary 1.. We first show that W 1,n
LS (∞)/n → w1

LS(∞) in probability. Noting

that the limit is a constant, it sufficient to show convergence in distribution. By Proposition 11.3.3

from [11], W 1,n
LS (∞)/n⇒ w1

LS(∞) iff for all g : R+ → R such that ‖g‖BL ≤ 1, we have

lim
n→∞

E

[
g

(
W 1,n

LS (∞)

n

)]
= g(w1

LS(∞)).

For each n we take each SnLS(0)
d
= SnLS(∞). Using Theorem 3 and the Skorokhod Representation

Theorem, we put the SnLS(0) on a common probability space such that SnLS(0)/n→ sLS(∞) a.s. We

use this process to generate the W 1,n
LS (∞) and w1

LS(∞) all on a common probability space.

It follows from Lemma 12 that there can be at most one time t∗ ∈ [0, ½) such that qLS(t∗) = c, and

that qLS(t) must be strictly monotone at t∗. Let ε0 be from the lemma and fix some ε ∈ (0, ε0). Let

δ be from Lemma 12 such that |qLS(t)−qLS(t∗)| < δ implies |t−t∗| < ε. Recall from Theorem 2 that

when SnLS(0)/n→ sLS(0) a.s., then sup0≤t≤½ ‖SnLS(t)/n− sLS(t)‖1 → 0 a.s. As |QnLS(t)/n− qLS(t)| ≤

‖SnLS(t)/n− sLS(t)‖1, we also have sup0≤t≤½ |QnLS(t)/n− qLS(t)| → 0 a.s. As a result, we also have

convergence in probability. In particular, for our δ,

lim
n→∞

P

(
sup

0≤t≤½

∣∣∣∣Qn(t)

n
− q(t)

∣∣∣∣ > δ

)
= 0.

Let Enδ be the event

Enδ
∆
=

{
sup

0≤t≤½

∣∣∣∣Qn(t)

n
− q(t)

∣∣∣∣ > δ

2

}
,
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i.e. limn→∞ P(Enδ ) = 0 for all δ. Let Ēnδ denote the complement of this event. We have that∣∣∣∣∣E
[
g

(
W 1,n

LS (∞)

n

)]
− g(w1

LS(∞))

∣∣∣∣∣ ≤
∣∣∣∣∣E
[
g

(
W 1,n

LS (∞)

n

)
− g(w1

LS(∞))

∣∣∣∣∣ Enδ
]∣∣∣∣∣P(Enδ )

+

∣∣∣∣∣E
[
g

(
W 1,n

LS (∞)

n

)
− g(w1

LS(∞))

∣∣∣∣∣ Ēnδ
]∣∣∣∣∣P(Ēnδ )

≤ 2‖g‖BLP(Enδ ) + ‖g‖BLE

[∣∣∣∣∣W 1,n
LS (∞)

n
− w1

LS(∞)

∣∣∣∣∣
∣∣∣∣∣ Ēnδ

]
,(97)

where in (97), we are using both that g is bounded by ‖g‖BL and has Lipschitz constant at most

‖g‖BL. Letting n→∞, we see the first term go to zero. For the second term, we consider two cases:

1. Suppose that inft∈[0,½) |qLS(t) − c| = γ > 0. We can assume without loss of generality that

δ < γ, as we can always take δ smaller without interfering in the convergence of our first term,

and doing so will only increase the proposed infimum. As δ < γ, we ensure that conditional

on Ēnδ , for every time t ∈ [0, ½) that∣∣∣∣QnLS(t)

n
− c
∣∣∣∣ ≥

∣∣∣∣∣|qLS(t)− c| −
∣∣∣∣QnLS(t)

n
− qLS(t)

∣∣∣∣
∣∣∣∣∣(98)

= |qLS(t)− c| −
∣∣∣∣QnLS(t)

n
− qLS(t)

∣∣∣∣(99)

≥ γ/2,

where (98) is the reverse triangle inequality and (99) follows by our choice of δ. We have two

further cases:

(a) If qLS(t) < c and thus QLS(t)/n < c for all t, then both W 1,n
LS (∞) and w1

LS(∞) will be

zero, so we will have that (97) converges to zero as n→∞.

(b) Similarly, if qLS(t) > c and thus QLS(t)/n > c for all t, then W 1,n
LS (∞) = An(0, ½) and

w1
LS(∞) = λ1/2. Thus

E

[∣∣∣∣∣W 1,n
LS (∞)

n
− w1

LS(∞)

∣∣∣∣∣
∣∣∣∣∣ Ēnδ

]
=

1

P
(
Ēnδ
)E[∣∣∣∣∣W 1,n

LS (∞)

n
− w1

LS(∞)

∣∣∣∣∣ IĒnδ
]

=
1

P
(
Ēnδ
)E [∣∣∣∣An(0, ½)

n
− λ1

2

∣∣∣∣ IĒnδ
]

≤ 1

P
(
Ēnδ
)E [∣∣∣∣An(0, ½)

n
− λ1

2

∣∣∣∣] .
The above converges to zero almost surely since E[An(0, ½)/n]→ λ1/2 as n→∞. Thus

(97) converges to zero as n→∞.
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2. Suppose instead that qLS(t) crosses c. Suppose λ1 > cµ, so by Lemma 12 qLS(t) is monotoni-

cally increasing. Let t∗ be the time such that qLS(t∗) = c. Then

w1
LS(∞) =

∫ ½

t∗
λ1dt = (½− t∗)λ1.

We claim that conditional on Ēnδ ,

|t− t∗| ≥ ε implies that |QnLS(t)/n− c| ≥ δ/2.(100)

We will show the contrapositive. We have that when |QnLS(t)/n− c| < δ/2, then

|qLS(t)− c| ≤
∣∣∣∣qLS(t)−

QnLS(t)

n

∣∣∣∣+

∣∣∣∣QnLS(t)

n
− c
∣∣∣∣ < δ.

Now by Lemma 12, |qLS(t)− c| < δ implies |t− t∗| < ε, showing the claim.

Next, we claim that then conditional on Ēnδ , for all t > t∗ + ε, QnLS(t)/n > c. Assume not for

contradiction. Then

0 ≤ c−
QnLS(t)

n
− δ

2
(101)

≤ c− qLS(t) +

∣∣∣∣QnLS(t)

n
− qLS(t)

∣∣∣∣− δ

2

≤ c− qLS(t)(102)

< 0,(103)

giving a contradiction. Here (101) holds by (100) in conjunction with QnLS(t)/n < c, (102)

holds as we are assuming Ēnδ , and finally (103) holds as λ1 > cµ and Lemma 12 implies that

qLS(t) is increasing in t, qLS(t∗) = c, and t > t∗.

By an analogous argument, we can show that for all t < t∗− ε, QnLS(t)/n < c. As the number

of reassignments W 1,n
LS (∞) is the number of arrivals such that QnLS(t) ≥ cn at the time t of

arrival, we thus have that all arrivals An(t∗+ ε, ½), will be reassignments, none of the arrivals

An(0, t∗ − ε) will be reassignments, and the remaining arrivals are to be determined. This

implies

An(t∗ + ε, ½)IĒnδ ≤W
1,n
LS (∞)IĒnδ ≤ A

n(t∗ − ε, ½)IĒnδ .
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Thus

E

[∣∣∣∣∣W 1,n
LS (∞)

n
− w1

LS(∞)

∣∣∣∣∣
∣∣∣∣∣ Ēnδ

]
≤ E

[∣∣∣∣∣A1,n
LS (t∗ + ε)

n
− w1

LS(∞)

∣∣∣∣∣+

∣∣∣∣∣A1,n
LS (t∗ − ε)

n
− w1

LS(∞)

∣∣∣∣∣
∣∣∣∣∣ Ēnδ

]

≤ E

[∣∣∣∣∣A1,n
LS (t∗ + ε)

n
− w1

LS(∞)

∣∣∣∣∣+

∣∣∣∣∣A1,n
LS (t∗ − ε)

n
− w1

LS(∞)

∣∣∣∣∣
∣∣∣∣∣
]/

P(Ēnδ )

≤ 2ελ1/P(Ēnδ ).

Letting n → ∞, the above converges to 2ελ1. As ε was arbitrary, the above term and thus

(97) must converge to zero as n→∞.

It is not hard to see that if instead λ1 < cµ, then as qLS(t) will be decreasing, we will obtain

a similar bound of the form

An(0, t∗ − ε)IĒnδ ≤W
1,n
LS (∞)IĒnδ ≤ A

n(0, t∗ + ε)IĒnδ ,

After taking expectations, we could again show the convergence of (97) to zero. Thus we

conclude that W 1,n
LS (∞)/n⇒ w1

LS(∞).

Showing that W 2,n
LS (∞) ⇒ w2

LS(∞), W 1,n
DA(∞)/n ⇒ w1

DA(∞), and W 2,n
DA(∞)/n ⇒ w2

DA(∞) is very

similar and the details are omitted.

A.7. Proof of Lemma 9. Here we give a series of lemmas about the differential equation

ẋ(t) = γ − µ(x(t) ∧m),

with x(0) ∈ R+, γ, µ,m > 0, that will ultimately allow us to prove Lemma 9. For convenience, we

let g(x, t) equal x(t) when x(0) = x (making the function g(x) defined in Lemma 9 equal to g(x, ½)).

Lemma 13. The differential equation given by ẋ(t) with initial condition x(0) ∈ R+ has a unique

solution x(t) with x(t) ≥ 0 for all t ∈ [0, ½]. Further, for every x ∈ R+, g(x, t) is either strictly

increasing in t for all t, strictly decreasing in t for all t, or equal to g(x, 0) for all t.

Proof. The differential equations

ẏ(t) = γ −mµ,

ż(t) = γ − z(t)µ,
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with an initial condition y(s) ∈ R+ and z(s) ∈ R+ both have unique solutions for all t > 0 given by

y(t) = y(s) + (t− s)(γ −mµ),

z(t) =
γ

µ
+ exp(−µ(t− s))

(
z(s)− γ

µ

)
,

respectively. We claim that these two differential equations in combination determine the path of

x(t). Given our formula for ẋ(t), we observe that x(t) ≥ m and x(t) = y(t) implies ẋ(t) = ẏ(t).

Suppose that for some s we have x(s) ≥ m and let y(s) = x(s). Then for all t ≥ s such that

y(t) ≥ m, we will have x(t) = y(t). Analogously, we observe that x(t) < m and x(t) = z(t) implies

that ẋ(t) = ż(t). Suppose that for some s we have x(s) < m, and let z(s) = x(s). Then for

all t ≥ s such that z(t) ≤ m, we will have x(t) = z(t). Thus we can show that x(t) has a unique

solution on [0, ½) for all initial conditions by showing that there is a clean exchange at the boundary

{t | x(t) = m}. In particular, it suffices to show that we cross the boundary at most one time, which

follows from the monotonicity claim in the second part of the Lemma.

First however, we need to analyze the long run behavior of z(t). We can immediately see from

ż(t) that if z(0) = γ/µ, then ż(t) = 0 so z(t) = γ/µ for all t. Similarly, when z(t) < γ/µ, z will be

strictly increasing at t, and when z(t) > γ/µ, z will be strictly decreasing at t. Further, from the

solution for z(t), we see that if at any time s, z(s) < γ/µ then for all times t > s, we will still have

z(t) < γ/µ. Namely, z will approach γ/µ but never reach it. Likewise, when z(s) > γ/µ, we will

have z(t) > γ/µ for all t > s.

We can now finish the Lemma by considering three cases:

1. Suppose γ > mµ, or equivalently γ/µ > m. If x(0) < m, then as the attractive point of

z(t) is greater than m, we will have x(t) strictly increasing until either time ½ or s such that

z(s) = m, if s < ½. There is nothing left the prove in the first case, so we consider the second.

Once x(t) ≥ m, as γ ≥ mµ, we have ẋ(t) = ẏ(t) = γ −mµ > 0, so x(t) will increase strictly

and never again fall before m. Thus in all cases, x(t) is strictly increasing for all t.

2. Suppose γ < mµ. Then if x(t) ≥ m, we will have ẋ(t) = ẏ(t) = γ −mµ < 0, so x(t) will be

strictly decreasing. Again there are two possibilities, either there is a time s < ½ such that

x(s) = m, or x(s) will not reach m before time ½. As x(t) is uniquely defined in the second

case, we need only consider the first case further. Once we reach m, the dynamics of x(t) will
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be that of z(t). Recall that z(t) will strictly decrease towards the fixed point γ/µ for all t > s

when z(s) < γ/µ. Thus for all x > γ/µ, g(x, t) is strictly decreasing in t. When x(0) = γ/µ,

then by our previous analysis of z(t) we have that g(x(0), t) = γ/µ for all t. Finally, when

x(0) < γ/µ, we know that x(t) will be strictly increasing for all t towards γ/µ. Thus in all

cases on x(0) the criteria of the Lemma are met.

3. Suppose γ = mµ. Then for all x ≥ m, ẋ(t) = γ −mµ = 0, so g(x, t) = g(x, 0). For all x < m,

by our analysis of z(t), we know that x(t) will be strictly increasing towards γ/µ = m but

never reach it.

Thus we can conclude that x(t) has a unique solution for all t ∈ [0, ½).

Lemma 14. When x > y, we have g(x, t) > g(y, t) for all t.

Proof. We will make a coupling argument. By Lemma 13, we know g(x, t) is either strictly

increasing in t, strictly decreasing in t, or constant. Assume for contradiction that there is a time

s such that g(y, s) ≥ g(x, s). We now consider cases:

1. Suppose that g(x, t) is strictly increasing in t. As g(y, t) is continuous in t, and at time s,

g(y, s) ≥ g(x, s) > g(x, 0), by the Intermediate Value Theorem there must be some time r

with 0 < r ≤ s such that g(y, r) = g(x, 0). But as ẋ(t) is not a function of t, only x(t), we

thus obtain that g(y, s) = g(x, s− r) < g(x, s), giving a contradiction.

2. Suppose that g(x, t) is constant. As g(y, t) is continuous in t, and at time s, we have g(y, s) ≥

g(x, s) = g(x, 0), by the Intermediate Value Theorem there is a time r ≤ s such that g(y, r) =

g(x, 0). But then g(y, t) is constant at r, contradicting that g(y, t) must either be strictly

increasing, strictly decreasing, or constant for all t.

3. Suppose that g(x, t) is strictly decreasing and g(y, t) is either strictly decreasing or constant.

Then by taking ḡ(x, t)
∆
= −g(y, t) and ḡ(y, t)

∆
= −g(x, t), we can apply cases one and two to

ḡ(x, t) to show the claim.

4. Finally, suppose that g(x, t) is strictly decreasing and g(y, t) is strictly increasing. Under our

assumption that g(y, s) ≥ g(x, s), again by the Intermediate Value Theorem, there must be

some time 0 < r ≤ s such that g(x, r) = g(y, r). But as ẋ(t) depends only x(t), not t, we

would then have that for all t ≥ r, g(x, t) = g(y, t). This creates a contradiction, as we have
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assumed that g(x, t) is strictly decreasing in t and g(y, t) is strictly increasing in t.

Lemma 15. For x ≥ x̃ as defined in Lemma 9, g(x, t) ≥ m for 0 ≤ t ≤ ½ and g(x, ½) =

x + (γ − cµ)/2. For x < x̃, there exist 0 ≤ s < t ≤ ½ such that for τ ∈ (s, t), g(x, τ) < m, and

g(x, ½) < x+ (γ − cµ)/2.

Proof. We compute for 0 ≤ t ≤ ½ that

g(x̃, t) = x̃+

∫ t

0
γ − µ(m ∧ g(x̃, τ))dτ

≥ x̃+

∫ t

0
γ −mµdτ

= x̃+ t(γ −mµ).(104)

We first consider g(x̃, t) in cases:

1. Suppose that γ ≥ mµ. Then x̃ = m, and as γ−mµ ≥ 0, we obtain from (104) that g(x̃, t) ≥ m

for all t ≥ 0.

2. Suppose that γ < mµ. Then x̃ = m− (γ −mµ)/2, so by (104) for all t ≥ 0,

g(x̃, t) ≥ m+ (γ −mµ)

(
t− 1

2

)
≥ m.

We thus conclude that g(x̃, t) ≥ m for all 0 ≤ t ≤ ½. As a result, we can now make the exact

computation that for all x ≥ x̃,

g(x, ½) = x+

∫ ½

0
γ − µ(m ∧ g(x, t))dt

= x+

∫ ½

0
γ − µmdt(105)

= x+
1

2
(γ −mµ).

where (105) holds as g(x, t) ≥ g(x̃, t) ≥ m by Lemma 14 and then the above analysis, making

m ∧ g(x, t) = m for all t.

We now consider x < x̃, and find s and t such that for all τ ∈ (s, t), g(x, τ) < m, as in the

statement of the lemma. We consider cases:
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1. Suppose γ > mµ and thus x̃ = m. Then g(x, 0) = x < x̃ = m so obviously we can take s = 0

and t small to show the claim.

2. Suppose instead that γ < mµ and thus x̃ = m − (γ −mµ)/2. For x < m, again the claim

obviously holds as then g(x, t) < m for all t ≤ ½. For x such that m ≤ x < x̃, observe that as

x̃ = m− (γ −mµ)/2,

0 ≤ t∗ ∆
=

x−m
mµ− γ

<
x̃−m
mµ− γ

=
1

2
,

and thus

g(x, t∗) = x+ (γ −mµ)
x−m
mµ− γ

= m.

As ẋ(t) = γ − µ(m ∧ x(t)) ≤ γ −mµ < 0 by our assumptions, we can take s = t∗ and t = ½.

Finally, using s and t from the statement of the lemma, we show that g(x(0), ½) > x(0)+(γ− cµ)/2

when x(0) < x̃. We compute that

g(x, ½) = x+

∫ ½

0
γ − µ(g(x, τ) ∧m)dτ

≥ x+

∫ s

0
γ − µmdτ +

∫ t

s
γ − µg(x, τ)dτ +

∫ ½

t
γ − µmdτ

= x+ (γ −mµ)(½− (t− s)) +

∫ t

s
γ − µg(x, τ)dτ

> x+ (γ −mµ)/2.

The final inequality is strict as g(x, τ) < m for all τ ∈ (s, t).

Lemma 16. For all x > y ≥ x̃, where x̃ is defined in Lemma 9,

g(x, ½)− g(y, ½) = x− y,

and for all x > y, y < x̃,

0 < g(x, ½)− g(y, ½) < x− y.

Proof. For x > y ≥ x̃, by Lemma 15, we have that

g(x, ½)− g(y, ½) = x+ (γ −mµ)/2− y − (γ −mµ)/2 = x− y.
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For x > y, y < x̃, let s and t be from Lemma 15 such that for all τ ∈ (s, t), g(y, τ) < m. Then

g(x, ½)− g(y, ½) = x− y + µ

∫ ½

0
(g(y, τ) ∧m)− (g(x, τ) ∧m)dτ.

As x > y, by Lemma 14 we have g(x, τ) > g(y, τ) for all τ , and thus g(x, τ) ∧m ≥ g(y, τ) ∧m for

all τ , making the integrand nonpositive. Thus

g(x, ½)− g(y, ½) = x− y + µ

∫ t

s
(g(y, τ) ∧m)− (g(x, τ) ∧m)dτ

= x− y + µ

∫ t

s
g(y, τ)− (g(x, τ) ∧m)dτ

≤ x− y + µ

∫ t

s
g(y, τ)− g(x, τ)dτ

< x− y.

That g(x, ½)− g(y, ½) > 0 follows immediately from Lemma 14.

Proof of Lemma 9.. The Lemma follows immediately from Lemma 13, Lemma 14, Lemma

15, and Lemma 16.

A.8. Null Recurrence and Transience. We give a sufficient condition to distinguish be-

tween the null recurrent and transient cases from [26], Theorem 3.2, (see also Section 3.6 from [14]).

We do not present the theorem in full generality. As in Appendix A.1, suppose we have a discrete

time irreducible Markov chain {Xk} taking values in X ⊂ Zd.

Proposition 10. Given a finite set B ⊂ X and Lyapunov function V : X → R+, assume that

P
(

lim sup
k→∞

V (Xk) =∞
)

= 1,(106)

inf
x∈X

Ex

[
(V (X1)− V (X0))2

]
> 0,(107)

sup
x∈X

Ex

[
(V (X1)− V (X0))4

]
<∞.(108)

If for all x ∈ X \B,

Ex [V (X1)− V (X0)] ≤
Ex

[
(V (X1)− V (X0))2

]
2V (x)

,(109)

then {Xk} is recurrent. Alternatively, if there exists ε > 0 such that for all x ∈ X \B,

Ex [V (X1)− V (X0)] ≥ (1 + ε)
Ex

[
(V (X1)− V (X0))2

]
2V (x)

,(110)

then {Xn} is transient.
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Remark 3. As noted in [26], a sufficient condition for (106) is that for every z ≥ 0,

inf
x∈X

P(V (X1) ≥ z | X0 = x) > 0.(111)

We now return to our model. As before, we will use the Lyapunov function V (q, r)
∆
= q + r.

Lemma 17. For each θ ∈ {LS,DA}, the following limit exists, is finite, and is non-zero:

Fθ
∆
= lim

q→∞
(q,r)∈Sθ

E(q,r)

[
(V (Sθ(1))− V (Sθ(0)))2

]
.(112)

Further,

sup
s∈Sθ

Es

[
(V (Sθ(1))− V (Sθ(0)))4

]
<∞.(113)

Finally, when ρθ = 1, as q →∞, we have for r such that (q, r) ∈ Sθ that

E(q,r)[V (Sθ(1))− V (Sθ(0))] = O(exp(−q/2)).(114)

Proof. First consider θ = LS. Recall from (31) that for any ` ≥ 0,

E(q,c)

[
(V (SLS(1))− V (SLS(0)))`

]
= E(q,c)

[(
A+Don

LS −Doff
LS

)`]
.

Further, recall that we coupled Don
LS with D̃on

LS that had distribution Pois(cµ) such that Don
LS < D̃on

LS,

and Doff
LS with D̃off

LS that had distribution Bin(c, 1−e−µ) such that Doff
LS ≤ D̃off

LS. Using these couplings,

we can show (113) just as we showed (29).

Recall that under our coupling, we have Doff
LS = D̃off

LS for initial (q, r) such that r = c. Likewise,

we have that Don
LS was equal to D̃on

LS under an initial condition (q, r) for those realizations where

D̃on
LS < q − c. This led to (34), namely that for q > c,

E(q,c) [Don
LS] ≥ E

[
D̃on

LSI{D̃on
LS<q−c}

]
.
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We now can show (114). Assuming ρθ = 1 and thus γθ = 0, we have

E(q,c)[V (SLS(1))− V (SLS(0))] = E
[
A−Doff

LS − D̃on
LS

]
+ E(q,c)

[
D̃on

LS −Don
LS

]
≤ −γθ + E[D̃on

LSI{D̃on
LS≥q−c}

]

≤

√
E
[(
D̃on

LS

)2
]
E
[
I{D̃on

LS≥q−c}

]
≤
√

((cµ)2 + cµ)E
[
exp

(
D̃on

LS − q + c
)]

≤ exp(−q/2)
√

((cµ)2 + cµ) exp(c) exp(cµ(e− 1))

= O (exp(−q/2)) ,

as q →∞. Here we use that for any random variable X, I{X≥t} ≤ exp(X − t).

It remains to show (112). We will show that

FLS = E[(A− D̃on
LS − D̃off

LS)2].

For any q > 0, observe that

E(q,c)

[
(V (SLS(1))− V (SLS(0)))2

]
= E(q,c)

[
(V (SLS(1))− V (SLS(0)))2 I{D̃on

LS>q−c}

]
+ E(q,c)

[
(V (SLS(1))− V (SLS(0)))2 I{D̃on

LS≤q−c}

]
.

For the second term, we have that

lim
q→∞

E(q,c)

[
(V (SLS(1))− V (SLS(0)))2 I{D̃on

LS≤q−c}

]
= lim

q→∞
E
[(
A− D̃on

LS − D̃off
LS

)2
I{D̃on

LS≤q−c}

](115)

= E
[(
A− D̃on

LS − D̃off
LS

)2
]

(116)

= FLS,

where (115) follows by our coupling and (116) follows from the Monotone Convergence Theorem.
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For the first term, we have

lim
q→∞

E(q,c)

[
(V (SLS(1))− V (SLS(0)))2 I{D̃on

LS>q−c}

]
≤ lim

q→∞

√
E(q,c)

[
(V (SLS(1))− V (SLS(0)))4

]
E(q,c)

[
I{D̃on

LS>q−c}

]
≤ lim

q→∞

√
P
(
D̃on

LS − c > q
)√

sup
s∈SLS

Es

[
(V (SLS(1))− V (SLS(0)))4

]
= 0,

where in the final equality we use (113). This shows (112) and thus the Lemma in the case of LS.

The case of DA is similar.

We now complete the proof of Theorem 1 by showing that for each θ ∈ {LS,DA}, {Sθ(k)} is null

recurrent when ρθ = 1 and transient when ρθ > 1.

Proof of Theorem 1.. We have already established in section Appendix A.1 that when ρθ ≥

1, {Sθ(k)} is either null recurrent or transient, and when ρθ < 1, {Sθ(k)} is positive recurrent. Thus

it suffices to show that {Sθ(k)} is recurrent when ρθ = 1 and transient otherwise. We proceed using

Proposition 10. We must check that the assumptions of the proposition are satisfied by {Sθ(k)}

for θ ∈ {LS,DA}. By (113) from Lemma 17, (108) is satisfied. It is obvious that (107) is satisfied.

Finally, to check (106), we verify the sufficient condition (111). Recalling Corollary 2, it is immediate

that for all z > 0,

inf
s∈Sθ

P(V (Sθ(1)) ≥ z | Sθ(0) = s) = P(V (Sθ(1)) ≥ z | Sθ(0) = (0, 0)) > 0.

Now suppose ρθ = 1. We will show that (109) holds. For a constant bθ > 0, we will take Bθ of

the form {(q, r) ∈ Sθ | q < bθ}. By (114) from Lemma 17, as q →∞, we have

E(q,r) [V (Sθ(1))− V (Sθ(0))] = O(exp(−q/2)),

and by (112) from Lemma 17, as q →∞,

E(q,r)

[
(V (Sθ(1))− V (Sθ(0)))2

]
2V (q, r)

= Θ

(
1

q

)
.

Thus by taking bθ sufficiently large and using that exp(−q/r) = o(1/q), we have (109) for all

s ∈ Sθ \Bθ, showing that {Sθ(k)} is null recurrent.
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Alternatively, suppose that ρθ > 1. We now must show that (110) holds. We use bθ to define Bθ

in the same way. By Lemma 1 and Lemma 2 we have

lim
q→∞

(q,r)∈Sθ

E(q,r) [V (Sθ(1))− V (Sθ(0))] = −γθ > 0,

and again by (112) we have

E(q,r) [V (Sθ(1))− V (Sθ(0))]

2V (Sθ(0))
= Θ

(
1

q

)
.

Thus by taking bθ sufficiently large and ε = 1, we have (110), showing {Sθ(k)} is transient, com-

pleting the proof.
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